不会(dp)……
我们发现绝对值的问题不太好搞,所以我们按顺序插入就可以了。
我们设一个状态 (dp_{i,j,k,l}) 为 插入前 (i) 个数,已经构成 (j) 个连通块,(k) 的贡献,(l) 表示(1)和(n)的边界问题 的方案数。
那么答案显而易见是 (frac{sum_{k=m}^{limit} dp_{n,1,k,2}}{n!})
由于你放到一些位置,贡献是负数,所以就直接在 (k) 那一维整体(+4500)就好了。
然后就是喜闻乐见的分类讨论环节了。
- 两边都不和连通块相连,产生 (-2 imes i) 的贡献,方案数为 (j - l + 1)。
- 一边和连通块,另一边不和连通块相连,那么产生 (0) 的贡献,方案数 (j - 1),条件 (j geq 2)。
- 两边都和连通块相连,产生 (2 imes i) 的贡献,方案数是 (j - 1),条件 (j geq 2)。
- 一边不和连通块相连,一边和边界相连,会产生 (-i) 的贡献,方案数是 (2-l),条件是 (l geq 2)。
- 一边和连通块相连,一边和边界相连,产生 (i) 的贡献,方案数是 (2-l),条件还是 (l geq 2)
滚动一下就好了。
// powered by c++11
// by Isaunoya
#include <bits/stdc++.h>
#define rep(i, x, y) for (register int i = (x); i <= (y); ++i)
#define Rep(i, x, y) for (register int i = (x); i >= (y); --i)
using namespace std;
using db = double;
using ll = long long;
using uint = unsigned int;
using ull = unsigned long long;
using pii = pair<int, int>;
#define fir first
#define sec second
template <class T>
void cmax(T& x, const T& y) {
if (x < y) x = y;
}
template <class T>
void cmin(T& x, const T& y) {
if (x > y) x = y;
}
#define all(v) v.begin(), v.end()
#define sz(v) ((int)v.size())
#define pb emplace_back
template <class T>
void sort(vector<T>& v) {
sort(all(v));
}
template <class T>
void reverse(vector<T>& v) {
reverse(all(v));
}
template <class T>
void unique(vector<T>& v) {
sort(all(v)), v.erase(unique(all(v)), v.end());
}
void reverse(string& s) { reverse(s.begin(), s.end()); }
const int io_size = 1 << 23 | 233;
const int io_limit = 1 << 22;
struct io_in {
char ch;
#ifndef __WIN64
char getchar() {
static char buf[io_size], *p1 = buf, *p2 = buf;
return (p1 == p2) && (p2 = (p1 = buf) + fread(buf, 1, io_size, stdin), p1 == p2) ? EOF : *p1++;
}
#endif
io_in& operator>>(char& c) {
for (c = getchar(); isspace(c); c = getchar());
return *this;
}
io_in& operator>>(string& s) {
for (s.clear(); isspace(ch = getchar());)
;
if (!~ch) return *this;
for (s = ch; !isspace(ch = getchar()) && ~ch; s += ch)
;
return *this;
}
io_in& operator>>(char* str) {
char* cur = str;
while (*cur) *cur++ = 0;
for (cur = str; isspace(ch = getchar());)
;
if (!~ch) return *this;
for (*cur = ch; !isspace(ch = getchar()) && ~ch; *++cur = ch)
;
return *++cur = 0, *this;
}
template <class T>
void read(T& x) {
bool f = 0;
while ((ch = getchar()) < 48 && ~ch) f ^= (ch == 45);
x = ~ch ? (ch ^ 48) : 0;
while ((ch = getchar()) > 47) x = x * 10 + (ch ^ 48);
x = f ? -x : x;
}
io_in& operator>>(int& x) { return read(x), *this; }
io_in& operator>>(ll& x) { return read(x), *this; }
io_in& operator>>(uint& x) { return read(x), *this; }
io_in& operator>>(ull& x) { return read(x), *this; }
io_in& operator>>(db& x) {
read(x);
bool f = x < 0;
x = f ? -x : x;
if (ch ^ '.') return *this;
double d = 0.1;
while ((ch = getchar()) > 47) x += d * (ch ^ 48), d *= .1;
return x = f ? -x : x, *this;
}
} in;
struct io_out {
char buf[io_size], *s = buf;
int pw[233], st[233];
io_out() {
set(7);
rep(i, pw[0] = 1, 9) pw[i] = pw[i - 1] * 10;
}
~io_out() { flush(); }
void io_chk() {
if (s - buf > io_limit) flush();
}
void flush() { fwrite(buf, 1, s - buf, stdout), fflush(stdout), s = buf; }
io_out& operator<<(char c) { return *s++ = c, *this; }
io_out& operator<<(string str) {
for (char c : str) *s++ = c;
return io_chk(), *this;
}
io_out& operator<<(char* str) {
char* cur = str;
while (*cur) *s++ = *cur++;
return io_chk(), *this;
}
template <class T>
void write(T x) {
if (x < 0) *s++ = '-', x = -x;
do {
st[++st[0]] = x % 10, x /= 10;
} while (x);
while (st[0]) *s++ = st[st[0]--] ^ 48;
}
io_out& operator<<(int x) { return write(x), io_chk(), *this; }
io_out& operator<<(ll x) { return write(x), io_chk(), *this; }
io_out& operator<<(uint x) { return write(x), io_chk(), *this; }
io_out& operator<<(ull x) { return write(x), io_chk(), *this; }
int len, lft, rig;
void set(int _length) { len = _length; }
io_out& operator<<(db x) {
bool f = x < 0;
x = f ? -x : x, lft = x, rig = 1. * (x - lft) * pw[len];
return write(f ? -lft : lft), *s++ = '.', write(rig), io_chk(), *this;
}
} out;
template <int sz, int mod>
struct math_t {
math_t() {
fac.resize(sz + 1), ifac.resize(sz + 1);
rep(i, fac[0] = 1, sz) fac[i] = fac[i - 1] * i % mod;
ifac[sz] = inv(fac[sz]);
Rep(i, sz - 1, 0) ifac[i] = ifac[i + 1] * (i + 1) % mod;
}
vector<int> fac, ifac;
int qpow(int x, int y) {
int ans = 1;
for (; y; y >>= 1, x = x * x % mod)
if (y & 1) ans = ans * x % mod;
return ans;
}
int inv(int x) { return qpow(x, mod - 2); }
int C(int n, int m) {
if (n < 0 || m < 0 || n < m) return 0;
return fac[n] * ifac[m] % mod * ifac[n - m] % mod;
}
};
int gcd(int x, int y) { return !y ? x : gcd(y, x % y); }
int lcm(int x, int y) { return x * y / gcd(x, y); }
int n , m , k;
namespace A {
double f[2][101][9001][3];
}
namespace B {
__float128 f[2][101][9001][3];
}
template < class T >
void print(T x) {
out << "0." ;
x *= 10;
rep(i , 1 , k - 1) {
out << (int)x ;
x = (x - (int)x) * 10;
}
out << (int)(x + 0.5) << '
';
}
template < class T >
void solve(T f[][101][9001][3]) {
f[0][0][0 + 4500][0] = 1;
rep(i , 1 , n) {
int p = i & 1, o = p ^ 1;
memset(f[p], 0, sizeof(f[p]));
rep(j , 0 , min(i - 1 , m)) {
rep(k , 0 , 9000) {
rep(l , 0 , 2) {
T t = f[o][j][k][l];
if(! t) continue;
if(k >= 2 * i) {
f[p][j + 1][k - 2 * i][l] += t * (j - l + 1);
}
if(j > 0) {
f[p][j][k][l] += t * (j * 2 - l);
}
if(j >= 2 && k + 2 * i <= 9000) {
f[p][j - 1][k + 2 * i][l] += t * (j - 1);
}
if(l ^ 2 && k >= i) {
f[p][j + 1][k - i][l + 1] += t * (2 - l);
}
if(l ^ 2 && j && k + i <= 9000) {
f[p][j][k + i][l + 1] += t * (2 - l);
}
}
}
}
}
T ans = 0;
rep(i , m + 4500 , 9000)
ans += f[n & 1][1][i][2];
rep(i , 1 , n) ans /= i;
print(ans);
}
signed main() {
// code begin.
in >> n >> m >> k;
if(k <= 8)
solve(A :: f);
else
solve(B :: f);
return 0;
// code end.
}