zoukankan      html  css  js  c++  java
  • P2612 [ZJOI2012]波浪 [dp]

    不会(dp)……

    我们发现绝对值的问题不太好搞,所以我们按顺序插入就可以了。
    我们设一个状态 (dp_{i,j,k,l}) 为 插入前 (i) 个数,已经构成 (j) 个连通块,(k) 的贡献,(l) 表示(1)(n)的边界问题 的方案数。

    那么答案显而易见是 (frac{sum_{k=m}^{limit} dp_{n,1,k,2}}{n!})
    由于你放到一些位置,贡献是负数,所以就直接在 (k) 那一维整体(+4500)就好了。

    然后就是喜闻乐见的分类讨论环节了。

    • 两边都不和连通块相连,产生 (-2 imes i) 的贡献,方案数为 (j - l + 1)
    • 一边和连通块,另一边不和连通块相连,那么产生 (0) 的贡献,方案数 (j - 1),条件 (j geq 2)
    • 两边都和连通块相连,产生 (2 imes i) 的贡献,方案数是 (j - 1),条件 (j geq 2)
    • 一边不和连通块相连,一边和边界相连,会产生 (-i) 的贡献,方案数是 (2-l),条件是 (l geq 2)
    • 一边和连通块相连,一边和边界相连,产生 (i) 的贡献,方案数是 (2-l),条件还是 (l geq 2)

    滚动一下就好了。

    // powered by c++11
    // by Isaunoya
    #include <bits/stdc++.h>
    
    #define rep(i, x, y) for (register int i = (x); i <= (y); ++i)
    #define Rep(i, x, y) for (register int i = (x); i >= (y); --i)
    
    using namespace std;
    using db = double;
    using ll = long long;
    using uint = unsigned int;
    using ull = unsigned long long;
    
    using pii = pair<int, int>;
    
    #define fir first
    #define sec second
    
    template <class T>
    
    void cmax(T& x, const T& y) {
      if (x < y) x = y;
    }
    
    template <class T>
    
    void cmin(T& x, const T& y) {
      if (x > y) x = y;
    }
    
    #define all(v) v.begin(), v.end()
    #define sz(v) ((int)v.size())
    #define pb emplace_back
    
    template <class T>
    
    void sort(vector<T>& v) {
      sort(all(v));
    }
    
    template <class T>
    
    void reverse(vector<T>& v) {
      reverse(all(v));
    }
    
    template <class T>
    
    void unique(vector<T>& v) {
      sort(all(v)), v.erase(unique(all(v)), v.end());
    }
    
    void reverse(string& s) { reverse(s.begin(), s.end()); }
    
    const int io_size = 1 << 23 | 233;
    const int io_limit = 1 << 22;
    struct io_in {
      char ch;
    #ifndef __WIN64
      char getchar() {
        static char buf[io_size], *p1 = buf, *p2 = buf;
    
        return (p1 == p2) && (p2 = (p1 = buf) + fread(buf, 1, io_size, stdin), p1 == p2) ? EOF : *p1++;
      }
    #endif
      io_in& operator>>(char& c) {
        for (c = getchar(); isspace(c); c = getchar());
    
        return *this;
      }
      io_in& operator>>(string& s) {
        for (s.clear(); isspace(ch = getchar());)
          ;
    
        if (!~ch) return *this;
    
        for (s = ch; !isspace(ch = getchar()) && ~ch; s += ch)
          ;
    
        return *this;
      }
    
      io_in& operator>>(char* str) {
        char* cur = str;
        while (*cur) *cur++ = 0;
    
        for (cur = str; isspace(ch = getchar());)
          ;
        if (!~ch) return *this;
    
        for (*cur = ch; !isspace(ch = getchar()) && ~ch; *++cur = ch)
          ;
    
        return *++cur = 0, *this;
      }
    
      template <class T>
    
      void read(T& x) {
        bool f = 0;
        while ((ch = getchar()) < 48 && ~ch) f ^= (ch == 45);
    
        x = ~ch ? (ch ^ 48) : 0;
        while ((ch = getchar()) > 47) x = x * 10 + (ch ^ 48);
        x = f ? -x : x;
      }
    
      io_in& operator>>(int& x) { return read(x), *this; }
    
      io_in& operator>>(ll& x) { return read(x), *this; }
    
      io_in& operator>>(uint& x) { return read(x), *this; }
    
      io_in& operator>>(ull& x) { return read(x), *this; }
    
      io_in& operator>>(db& x) {
        read(x);
        bool f = x < 0;
        x = f ? -x : x;
        if (ch ^ '.') return *this;
    
        double d = 0.1;
        while ((ch = getchar()) > 47) x += d * (ch ^ 48), d *= .1;
        return x = f ? -x : x, *this;
      }
    } in;
    
    struct io_out {
      char buf[io_size], *s = buf;
      int pw[233], st[233];
    
      io_out() {
        set(7);
        rep(i, pw[0] = 1, 9) pw[i] = pw[i - 1] * 10;
      }
    
      ~io_out() { flush(); }
    
      void io_chk() {
        if (s - buf > io_limit) flush();
      }
    
      void flush() { fwrite(buf, 1, s - buf, stdout), fflush(stdout), s = buf; }
    
      io_out& operator<<(char c) { return *s++ = c, *this; }
    
      io_out& operator<<(string str) {
        for (char c : str) *s++ = c;
        return io_chk(), *this;
      }
    
      io_out& operator<<(char* str) {
        char* cur = str;
        while (*cur) *s++ = *cur++;
        return io_chk(), *this;
      }
    
      template <class T>
    
      void write(T x) {
        if (x < 0) *s++ = '-', x = -x;
    
        do {
          st[++st[0]] = x % 10, x /= 10;
        } while (x);
    
        while (st[0]) *s++ = st[st[0]--] ^ 48;
      }
    
      io_out& operator<<(int x) { return write(x), io_chk(), *this; }
    
      io_out& operator<<(ll x) { return write(x), io_chk(), *this; }
    
      io_out& operator<<(uint x) { return write(x), io_chk(), *this; }
    
      io_out& operator<<(ull x) { return write(x), io_chk(), *this; }
    
      int len, lft, rig;
    
      void set(int _length) { len = _length; }
    
      io_out& operator<<(db x) {
        bool f = x < 0;
        x = f ? -x : x, lft = x, rig = 1. * (x - lft) * pw[len];
        return write(f ? -lft : lft), *s++ = '.', write(rig), io_chk(), *this;
      }
    } out;
    
    template <int sz, int mod>
    
    struct math_t {
    	math_t() {
        fac.resize(sz + 1), ifac.resize(sz + 1);
        rep(i, fac[0] = 1, sz) fac[i] = fac[i - 1] * i % mod;
    
        ifac[sz] = inv(fac[sz]);
        Rep(i, sz - 1, 0) ifac[i] = ifac[i + 1] * (i + 1) % mod;
      }
    
      vector<int> fac, ifac;
    
      int qpow(int x, int y) {
        int ans = 1;
        for (; y; y >>= 1, x = x * x % mod)
          if (y & 1) ans = ans * x % mod;
        return ans;
      }
    
      int inv(int x) { return qpow(x, mod - 2); }
    
      int C(int n, int m) {
        if (n < 0 || m < 0 || n < m) return 0;
        return fac[n] * ifac[m] % mod * ifac[n - m] % mod;
      }
    };
    
    int gcd(int x, int y) { return !y ? x : gcd(y, x % y); }
    int lcm(int x, int y) { return x * y / gcd(x, y); }
    
    int n , m , k;
    
    namespace A {
    	double f[2][101][9001][3];
    }
    
    namespace B {
    	__float128 f[2][101][9001][3];
    }
    
    template < class T > 
    
    void print(T x) {
    	out << "0." ;
    	x *= 10;
    	rep(i , 1 , k - 1) {
    		out << (int)x ;
    		x = (x - (int)x) * 10;
    	}
    	out << (int)(x + 0.5) << '
    ';
    }
    
    template < class T > 
    
    void solve(T f[][101][9001][3]) {
    	f[0][0][0 + 4500][0] = 1;
    	
    	rep(i , 1 , n) {
    		int p = i & 1, o = p ^ 1;
    		memset(f[p], 0, sizeof(f[p]));
    		rep(j , 0 , min(i - 1 , m)) {
    			rep(k , 0 , 9000) {
    				rep(l , 0 , 2) {
    					T t = f[o][j][k][l];
    					if(! t) continue;
    					if(k >= 2 * i) {
    						f[p][j + 1][k - 2 * i][l] += t * (j - l + 1);
    					}
    					if(j > 0) {
    						f[p][j][k][l] += t * (j * 2 - l);
    					}
    					if(j >= 2 && k + 2 * i <= 9000) {
    						f[p][j - 1][k + 2 * i][l] += t * (j - 1);
    					}
    					if(l ^ 2 && k >= i) {
    						f[p][j + 1][k - i][l + 1] += t * (2 - l);
    					}
    					if(l ^ 2 && j && k + i <= 9000) {
    						f[p][j][k + i][l + 1] += t * (2 - l);
    					}
    				}
    			}
    		}
    	}
    	
    	T ans = 0;
    	rep(i , m + 4500 , 9000)
    		ans += f[n & 1][1][i][2];
    	rep(i , 1 , n) ans /= i;
    	
    	print(ans);
    }
    
    signed main() {
      // code begin.
    	in >> n >> m >> k;
    	if(k <= 8)
    		solve(A :: f);
    	else 
    		solve(B :: f);
      return 0;
      // code end.
    }
    
  • 相关阅读:
    [leetcode] #279 Perfect Squares (medium)
    vue-cli3.0配置详解
    babel7 的配置加载逻辑
    webpack-小滴课堂学习笔记
    VUE-cli3使用 svg-sprite-loader
    打包报错,提示UglifyJs Unexpected token: keyword «const»
    UglifyJs报Unexpected token punc «:», expected punc «,» 这类错误的解决办法
    element-ui实现部分引用
    图解 HTTP 缓存
    process.argv
  • 原文地址:https://www.cnblogs.com/Isaunoya/p/12591305.html
Copyright © 2011-2022 走看看