假设字符串(B,D)满足(|B| geq |D|),那么一定会有(B=rev(D)+T),其中(T)是一个回文串。
考虑枚举回文串(T)的中心(p),找到以(p)为中心的最长回文串(S[l,r])。值得注意的是,回文串越长一定越好,因为如果回文串不是最长的,那么可以向左右拓展一位,(B)串长度会(+1),(D)串长度会(-1),没有变化。所以我们直接Manacher求最长回文串即可。
现在我们需要求的就是最小的(i)满足(rev(S[i,l-1]))是(S[r+1,N])的子串。
发现对于所有可能的(i)都是(S[1,l-1])的后缀。子串、后缀相关的问题可以考虑后缀自动机。我们对(rev(S))建立SAM,对于SAM上的每一个节点记录最小的(endpos),并将(S)的所有前缀放到SAM上匹配。那么(S[i,l-1])是SAM的parent树上(S[1,l-1])的祖先。在parent树上倍增就可以得到满足条件的最小的(i)。
对于原串和反串各做一遍就可以得到最后的答案。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#include<algorithm>
//This code is written by Itst
using namespace std;
#define PII pair < int , int >
const int MAXN = 2e5 + 7;
char s[MAXN];
int ind[MAXN] , len[MAXN] , L , ans;
PII ind1 , ind2;
bool flg = 0;
namespace SAM{
char S[MAXN];
int Lst[MAXN] , trans[MAXN][26] , fa[MAXN] , endpos[MAXN] , jump[MAXN][19];
int cnt = 1 , lst = 1;
void insert(int l , int x){
int p = lst , t = ++cnt; lst = t;
Lst[t] = endpos[t] = l;
while(p && !trans[p][x]){trans[p][x] = t; p = fa[p];}
if(!p){fa[t] = 1; return;}
int q = trans[p][x];
if(Lst[q] == Lst[p] + 1){fa[t] = q; return;}
int k = ++cnt; endpos[k] = 1e9;
Lst[k] = Lst[p] + 1;
fa[k] = fa[q]; fa[q] = fa[t] = k;
memcpy(trans[k] , trans[q] , sizeof(trans[q]));
while(trans[p][x] == q){trans[p][x] = k; p = fa[p];}
}
vector < int > ch[MAXN];
void dfs(int x){
for(int i = 1 ; jump[x][i - 1] ; ++i)
jump[x][i] = jump[jump[x][i - 1]][i - 1];
for(auto t : ch[x]){jump[t][0] = x; dfs(t); endpos[x] = min(endpos[x] , endpos[t]);}
}
void init(){
memcpy(S , s , sizeof(S)); reverse(S + 1 , S + L + 1);
for(int i = 1 ; i <= L ; ++i) insert(i , S[i] - 'a');
for(int i = 2 ; i <= cnt ; ++i) ch[fa[i]].push_back(i);
dfs(1);
}
int query(int x , int pos){
if(endpos[x] <= pos) return x;
for(int i = 18 ; i >= 0 ; --i)
if(endpos[jump[x][i]] > pos)
x = jump[x][i];
return jump[x][0];
}
void clear(){
memset(trans , 0 , sizeof(trans)); memset(Lst , 0 , sizeof(Lst));
memset(fa , 0 , sizeof(fa)); memset(endpos , 0 , sizeof(endpos));
memset(jump , 0 , sizeof(jump));
for(int i = 1 ; i <= cnt ; ++i) ch[i].clear();
cnt = lst = 1;
}
}
namespace Manacher{
char S[MAXN];
int Len[MAXN];
void work(){
for(int i = 1 ; i <= L ; ++i)
S[(i << 1) - 1] = s[i];
memset(Len , 0 , sizeof(Len));
int maxR = 1 , maxI = 1;
for(int i = 1 ; i < L << 1 ; ++i){
Len[i] = min(maxR - i , Len[2 * maxI - i]);
while(i - Len[i] >= 0 && i + Len[i] <= L << 1 && S[i - Len[i]] == S[i + Len[i]])
++Len[i];
int posL = (i - Len[i] + 1) / 2 + 1 , posR = (i + Len[i] + 1) / 2 - 1;
if(posL <= posR){
int u = SAM::query(ind[posL - 1] , L - posR) , l = u == ind[posL - 1] ? len[posL - 1] : SAM::Lst[u];
if(ans < posR - posL + 1 + 2 * l){
ans = posR - posL + 1 + 2 * l;
ind1 = PII(posL - l , posR);
if(l) ind2 = PII(L - SAM::endpos[u] + 1 , L - SAM::endpos[u] + l);
else ind2 = PII(-1 , -1);
flg = 1;
}
}
if(maxR <= Len[i] + i){
maxR = Len[i] + i;
maxI = i;
}
}
}
}
void work(){
flg = 0;
SAM::init(); ind[0] = 1;
for(int i = 1 ; i <= L ; ++i){
int cur = ind[i - 1] , l = len[i - 1];
while(cur && !SAM::trans[cur][s[i] - 'a']) l = SAM::Lst[cur = SAM::fa[cur]];
!cur ? ind[i] = 1 : (ind[i] = SAM::trans[cur][s[i] - 'a'] , len[i] = l + 1);
}
Manacher::work();
}
int main(){
scanf("%s" , s + 1);
L = strlen(s + 1); work();
reverse(s + 1 , s + L + 1); SAM::clear(); work();
if(flg){
swap(ind2 , ind1); swap(ind1.first , ind1.second); swap(ind2.first , ind2.second);
ind1.first = L + 1 - ind1.first; ind1.second = L + 1 - ind1.second;
ind2.first = L + 1 - ind2.first; ind2.second = L + 1 - ind2.second;
}
printf("%d
%d %d
%d %d
" , ans , ind1.first , ind1.second , ind2.first , ind2.second);
return 0;
}