zoukankan      html  css  js  c++  java
  • HDU 4990 Reading comprehension

    题目链接:HDU 4990 Reading comprehension

    题目大意:
    (f_0 = 0)(n)为奇数时:(f_n = f_{n-1} imes 2 + 1)(n)为偶数时:(f_n = f_{n-1} imes 2)
    已知(n)(m),求(f_n\%m。)

    题解:
    假设(n)为奇数,那么(f_n=f_{n-1} imes 2+1),而(n-1)必定是偶数,所以有:(f_n=f_{n-1}+f_{n-2} imes 2+1)
    同理,假设(n)为偶数,那么(f_n=f_{n-1} imes 2),而(n-1)必定是奇数,所以有:(f_n=f_{n-1}+f_{n-2} imes 2+1)
    那么,(f_n=f_{n-1}+f_{n-2} imes 2+1)对于任意(n(n>0))恒成立。
    构造矩阵:

    [left(egin{matrix} f_i \ f_{i-1} \ 1 end{matrix} ight) = left(egin{matrix} 1 & 2 & 1 \ 1 & 0 & 0 \ 0 & 0 & 1 end{matrix} ight) imes left(egin{matrix} f_{i-1} \ f_{i-2} \ 1 end{matrix} ight) ]

    所以:

    [left(egin{matrix} f_n \ f_{n-1} \ 1 end{matrix} ight) = left(egin{matrix} 1 & 2 & 1 \ 1 & 0 & 0 \ 0 & 0 & 1 end{matrix} ight)^{n-1} imes left(egin{matrix} f_1 \ f_0 \ 1 end{matrix} ight) ]

    (f_1 = 1,f_0 = 0)得:

    [left(egin{matrix} f_n \ f_{n-1} \ 1 end{matrix} ight) = left(egin{matrix} 1 & 2 & 1 \ 1 & 0 & 0 \ 0 & 0 & 1 end{matrix} ight)^{n-1} imes left(egin{matrix} 1 \ 0 \ 1 end{matrix} ight) ]

    #include <iostream>
    #include <cstring>
    using namespace std;
    
    struct Matrix { // 矩阵
        int row, col;
        long long num[3][3];
    };
    long long n, m;
    
    Matrix multiply(Matrix a, Matrix b) { // 矩阵乘法
        Matrix temp;
        temp.row = a.row, temp.col = b.col;
        memset(temp.num, 0, sizeof(temp.num));
        for (int i = 0; i < a.row; ++i)
            for (int j = 0; j < b.col; ++j)
                for (int k = 0; k < a.col; ++k)
                    temp.num[i][j] = (temp.num[i][j] + a.num[i][k] * b.num[k][j] % m) % m;
        return temp;
    }
    
    Matrix fastPow(Matrix base, long long k) { // 矩阵快速幂
        Matrix ans;
        ans.row = ans.col = 3;
        memset(ans.num, 0, sizeof(ans.num));
        ans.num[0][0] = ans.num[1][1] = ans.num[2][2] = 1;
        while (k) {
            if (k & 1) {
                ans = multiply(ans, base);
            }
            base = multiply(base, base);
            k >>= 1;
        }
        return ans;
    }
    
    int main() {
        Matrix base;
        base.row = base.col = 3;
        base.num[0][0] = base.num[0][2] = base.num[1][0] = base.num[2][2] = 1;
        base.num[1][1] = base.num[1][2] = base.num[2][0] = base.num[2][1] = 0;
        base.num[0][1] = 2;
        while (cin >> n >> m) {
            Matrix ans = fastPow(base, n - 1);
            cout << (ans.num[0][0] + ans.num[0][2]) % m << endl;
        }
        return 0;
    }
    
  • 相关阅读:
    HDU 5360 Hiking(优先队列)2015 Multi-University Training Contest 6
    多区域显示(6)-版面布局
    静态变量和成员变量的区别 && 成员变量和局部变量的区别
    java基础学习_面向对象(上)02_day07总结
    java基础学习_面向对象(上)01_day07总结
    面向对象的概述
    面向对象思想的引入
    Failed to create the Java Virtual Machine(zt)
    eclipse web开发Server配置
    javamail接收邮件(zt)
  • 原文地址:https://www.cnblogs.com/IzumiSagiri/p/14319045.html
Copyright © 2011-2022 走看看