zoukankan      html  css  js  c++  java
  • hdu 5791 (DP) Two

    hdu 5791

    Two

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 1421    Accepted Submission(s): 630


    Problem Description
    Alice gets two sequences A and B. A easy problem comes. How many pair of sequence A' and sequence B' are same. For example, {1,2} and {1,2} are same. {1,2,4} and {1,4,2} are not same. A' is a subsequence of A. B' is a subsequence of B. The subsequnce can be not continuous. For example, {1,1,2} has 7 subsequences {1},{1},{2},{1,1},{1,2},{1,2},{1,1,2}. The answer can be very large. Output the answer mod 1000000007.
     

    Input
    The input contains multiple test cases.

    For each test case, the first line cantains two integers N,M(1N,M1000). The next line contains N integers. The next line followed M integers. All integers are between 1 and 1000.
     

    Output
    For each test case, output the answer mod 1000000007.
     

    Sample Input
    3 2 1 2 3 2 1 3 2 1 2 3 1 2
     

    Sample Output
    2 3
     

    求两个序列的相同的公共子序列的个数,取模。

    DP[i][j]表示到a数组的第 i 个和b数组的第 j 个之间的个数,可以归纳出,当a[i]==b[j]时,dp[i][j]=dp[i-1][j]+dp[i][j-1]+1;

    当不等的时候,dp[i][j]=dp[i-1][j]+dp[i][j-1]-dp[i-1][j-1].(仔细琢磨琢磨,会发现很有道理)因为有减法的运算所以最后答案可能出现

    负数,注意处理一下。

     1 #include<cstdio>
     2 #include<cstring>
     3 #include<iostream>
     4 #include<algorithm>
     5 using namespace std;
     6 
     7 typedef long long ll;
     8 const int mod = 1000000007;
     9 ll dp[1010][1010];
    10 int a[1010],b[1010];
    11 
    12 int main()
    13 {
    14     int n,m;
    15     while (~scanf("%d%d",&n,&m)){
    16         for (int i=1 ; i<=n ; i++) scanf("%d",&a[i]);
    17         for (int i=1 ; i<=m ; i++) scanf("%d",&b[i]);
    18         memset(dp,0,sizeof(dp));
    19         for (int i=1 ; i<=n ; i++){
    20             for (int j=1 ; j<=m ; j++){
    21                 if (a[i]==b[j]) dp[i][j]=dp[i-1][j]+dp[i][j-1]+1;
    22                 else dp[i][j]=dp[i-1][j]+dp[i][j-1]-dp[i-1][j-1];
    23                 dp[i][j]%=mod;
    24             }
    25         }
    26         printf("%I64d
    ",(dp[n][m]+mod)%mod);
    27     }
    28     return 0;
    29 }
     
  • 相关阅读:
    java中的Class类
    装机
    CSS入门
    初级HTML
    IO加强
    Lambda表达式
    IOStream-基础
    JavaSE阶段基础内容(不包括I/O,常用类,集合)
    markdown学习
    Log4j配置详解
  • 原文地址:https://www.cnblogs.com/JJCHEHEDA/p/5738830.html
Copyright © 2011-2022 走看看