zoukankan      html  css  js  c++  java
  • hdu 5791 (DP) Two

    hdu 5791

    Two

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 1421    Accepted Submission(s): 630


    Problem Description
    Alice gets two sequences A and B. A easy problem comes. How many pair of sequence A' and sequence B' are same. For example, {1,2} and {1,2} are same. {1,2,4} and {1,4,2} are not same. A' is a subsequence of A. B' is a subsequence of B. The subsequnce can be not continuous. For example, {1,1,2} has 7 subsequences {1},{1},{2},{1,1},{1,2},{1,2},{1,1,2}. The answer can be very large. Output the answer mod 1000000007.
     

    Input
    The input contains multiple test cases.

    For each test case, the first line cantains two integers N,M(1N,M1000). The next line contains N integers. The next line followed M integers. All integers are between 1 and 1000.
     

    Output
    For each test case, output the answer mod 1000000007.
     

    Sample Input
    3 2 1 2 3 2 1 3 2 1 2 3 1 2
     

    Sample Output
    2 3
     

    求两个序列的相同的公共子序列的个数,取模。

    DP[i][j]表示到a数组的第 i 个和b数组的第 j 个之间的个数,可以归纳出,当a[i]==b[j]时,dp[i][j]=dp[i-1][j]+dp[i][j-1]+1;

    当不等的时候,dp[i][j]=dp[i-1][j]+dp[i][j-1]-dp[i-1][j-1].(仔细琢磨琢磨,会发现很有道理)因为有减法的运算所以最后答案可能出现

    负数,注意处理一下。

     1 #include<cstdio>
     2 #include<cstring>
     3 #include<iostream>
     4 #include<algorithm>
     5 using namespace std;
     6 
     7 typedef long long ll;
     8 const int mod = 1000000007;
     9 ll dp[1010][1010];
    10 int a[1010],b[1010];
    11 
    12 int main()
    13 {
    14     int n,m;
    15     while (~scanf("%d%d",&n,&m)){
    16         for (int i=1 ; i<=n ; i++) scanf("%d",&a[i]);
    17         for (int i=1 ; i<=m ; i++) scanf("%d",&b[i]);
    18         memset(dp,0,sizeof(dp));
    19         for (int i=1 ; i<=n ; i++){
    20             for (int j=1 ; j<=m ; j++){
    21                 if (a[i]==b[j]) dp[i][j]=dp[i-1][j]+dp[i][j-1]+1;
    22                 else dp[i][j]=dp[i-1][j]+dp[i][j-1]-dp[i-1][j-1];
    23                 dp[i][j]%=mod;
    24             }
    25         }
    26         printf("%I64d
    ",(dp[n][m]+mod)%mod);
    27     }
    28     return 0;
    29 }
     
  • 相关阅读:
    RCP中如何使用代码安装、运行plugins
    家传卤水秘方备了个份
    解决Activator X for bundle Y is invalid 以及 Activator not found
    【三分法】hdu2438 Turn the corner
    【01背包】洛谷P1282多米诺骨牌
    【动态规划】洛谷P1004方格取数
    【单调栈】最长不上升子序列变式,洛谷 P2757 导弹的召唤
    【埃氏筛】洛谷P3383埃氏筛模板
    【状压DP】poj3254 Corn Fields
    【动态规划】洛谷P1006传纸条
  • 原文地址:https://www.cnblogs.com/JJCHEHEDA/p/5738830.html
Copyright © 2011-2022 走看看