Discription
Let's denote d(n) as the number of divisors of a positive integer n. You are given three integers a, b and c. Your task is to calculate the following sum:
Find the sum modulo 1073741824 (230).
Input
The first line contains three space-separated integers a, b and c (1 ≤ a, b, c ≤ 2000).
Output
Print a single integer — the required sum modulo 1073741824 (230).
Example
Input
2 2 2
Output
20
Input
4 4 4
Output
328
Input
10 10 10
Output
11536
Note
For the first example.
- d(1·1·1) = d(1) = 1;
- d(1·1·2) = d(2) = 2;
- d(1·2·1) = d(2) = 2;
- d(1·2·2) = d(4) = 3;
- d(2·1·1) = d(2) = 2;
- d(2·1·2) = d(4) = 3;
- d(2·2·1) = d(4) = 3;
- d(2·2·2) = d(8) = 4.
So the result is 1 + 2 + 2 + 3 + 2 + 3 + 3 + 4 = 20.
我是直接暴力合并a和b,然后设 to(i) 为有多少对有序对(x,y) 满足 1<=x<=a 且 1<=y<=b 且 x*y==i。
然后式子就是 Σ(i=1 to a*b) to(i) Σ(j=1 to c) d(i*j)
这个用约数个数函数的基本式子就可以化简,最后可以 用不到 O(a*b*log(a*b)) 的时间计算出答案。
所以a,b就取三个数中最小的两个就行了。
#include<bits/stdc++.h> #define ll long long #define maxn 4000000 using namespace std; const int ha=1<<30; int a,b,c,miu[maxn+5]; int zs[maxn/5],t=0,D,low[maxn+5]; int d[maxn+5],to[maxn+5],ans=0; bool v[maxn+5]; inline void init(){ for(int i=1;i<=a;i++) for(int j=1;j<=b;j++) to[i*j]++; miu[1]=d[1]=low[1]=1; for(int i=2;i<=maxn;i++){ if(!v[i]) zs[++t]=i,miu[i]=-1,low[i]=i,d[i]=2; for(int j=1,u;j<=t&&(u=zs[j]*i)<=maxn;j++){ v[u]=1; if(!(i%zs[j])){ low[u]=low[i]*zs[j]; if(low[i]==i) d[u]=d[i]+1; else d[u]=d[low[u]]*d[i/low[i]]; break; } low[u]=zs[j],d[u]=d[i]<<1,miu[u]=-miu[i]; } } for(int i=1;i<=maxn;i++) d[i]+=d[i-1]; } inline int add(int x,int y){ x+=y; return x>=ha?x-ha:x; } inline void calc(){ for(int i=1,sum;i<=c;i++) if(miu[i]){ sum=0; for(int j=i;j<=D;j+=i) sum=add(sum,to[j]*(ll)(d[j/i]-d[j/i-1])%ha); sum=sum*(ll)d[c/i]%ha; if(miu[i]==1) ans=add(ans,sum); else ans=add(ans,ha-sum); } printf("%d ",ans); } int main(){ scanf("%d%d%d",&a,&b,&c); if(a>b) swap(a,b); if(a>c) swap(a,c); if(b>c) swap(b,c); D=a*b; init(); calc(); return 0; }