Discription
Given a sequence of integers a1, ..., an and q queries x1, ..., xq on it. For each query xi you have to count the number of pairs (l, r) such that 1 ≤ l ≤ r ≤ n and gcd(al, al + 1, ..., ar) = xi.
is a greatest common divisor of v1, v2, ..., vn, that is equal to a largest positive integer that divides all vi.
Input
The first line of the input contains integer n, (1 ≤ n ≤ 105), denoting the length of the sequence. The next line contains n space separated integers a1, ..., an, (1 ≤ ai ≤ 109).
The third line of the input contains integer q, (1 ≤ q ≤ 3 × 105), denoting the number of queries. Then follows q lines, each contain an integer xi, (1 ≤ xi ≤ 109).
Output
For each query print the result in a separate line.
Examples
Input
3
2 6 3
5
1
2
3
4
6
Output
1
2
2
0
1
Input
7
10 20 3 15 1000 60 16
10
1
2
3
4
5
6
10
20
60
1000
Output
14
0
2
2
2
0
2
2
1
1
因为一个数所有的质因子的次数和 是 log级别的,所以我们可以直接扫一遍,暴力维护以当前扫描的点位右端点的每个区间的gcd有多少种以及每种最远能向左边延伸多少,然后计算对答案的贡献就行了。
因为我的hash姿势实在是有点laji,所以就用hash写了一下所有被询问到的数。本来只想练练手,结果竟然成了vjudge这个题的榜rank1 2333.
#include<bits/stdc++.h> #define ll long long using namespace std; const int maxn=300005; const int ha=19260817; int gcd(int x,int y){ return y?gcd(y,x%y):x;} struct hashmap{ int hd[ha+5],num[maxn],cnt,ne[maxn]; ll sum[maxn]; inline void clear(){ cnt=0;} inline void addpoint(int x){ int K=x%ha; for(int i=hd[K];i;i=ne[i]) if(num[i]==x) return; num[++cnt]=x,ne[cnt]=hd[K],hd[K]=cnt; } inline void add(int x,ll y){ int K=x%ha; for(int i=hd[K];i;i=ne[i]) if(num[i]==x){ sum[i]+=y; return; } } inline ll query(int x){ int K=x%ha; for(int i=hd[K];i;i=ne[i]) if(num[i]==x) return sum[i]; return 0; } }M; int n,a[maxn],X[maxn],m; int L[233],T,R[233],S; int pos[233],P[233]; inline int read(){ int x=0; char ch=getchar(); for(;!isdigit(ch);ch=getchar()); for(;isdigit(ch);ch=getchar()) x=x*10+ch-'0'; return x; } inline void solve(){ for(int i=1;i<=n;i++){ L[++T]=a[i],P[T]=i,S=0; for(int j=1;j<T;j++) L[j]=gcd(L[j],a[i]); for(int j=1;j<=T;j++) if(L[j]!=L[j-1]) R[++S]=L[j],pos[S]=P[j]; for(int j=1;j<=S;j++) L[j]=R[j],P[j]=pos[j]; T=S; for(int j=1;j<T;j++) M.add(L[j],P[j+1]-P[j]); M.add(L[T],i+1-P[T]); } } int main(){ M.clear(),n=read(); for(int i=1;i<=n;i++) a[i]=read(); m=read(); for(int i=1;i<=m;i++) X[i]=read(),M.addpoint(X[i]); solve(); for(int i=1;i<=m;i++) printf("%I64d ",M.query(X[i])); return 0; }