zoukankan      html  css  js  c++  java
  • CodeForces

    Discription

    By the age of three Smart Beaver mastered all arithmetic operations and got this summer homework from the amazed teacher:

    You are given a sequence of integers a1, a2, ..., an. Your task is to perform on it mconsecutive operations of the following type:

    1. For given numbers xi and vi assign value vi to element axi.
    2. For given numbers li and ri you've got to calculate sum , where f0 = f1 = 1 and at i ≥ 2: fi = fi - 1 + fi - 2.
    3. For a group of three numbers li ri di you should increase value ax by di for allx (li ≤ x ≤ ri).

    Smart Beaver planned a tour around great Canadian lakes, so he asked you to help him solve the given problem.

    Input

    The first line contains two integers n and m (1 ≤ n, m ≤ 2·105) — the number of integers in the sequence and the number of operations, correspondingly. The second line contains n integers a1, a2, ..., an (0 ≤ ai ≤ 105). Then follow m lines, each describes an operation. Each line starts with an integer ti (1 ≤ ti ≤ 3) — the operation type:

    • if ti = 1, then next follow two integers xi vi (1 ≤ xi ≤ n, 0 ≤ vi ≤ 105);
    • if ti = 2, then next follow two integers li ri (1 ≤ li ≤ ri ≤ n);
    • if ti = 3, then next follow three integers li ri di (1 ≤ li ≤ ri ≤ n, 0 ≤ di ≤ 105).

    The input limits for scoring 30 points are (subproblem E1):

    • It is guaranteed that n does not exceed 100, m does not exceed 10000 and there will be no queries of the 3-rd type.

    The input limits for scoring 70 points are (subproblems E1+E2):

    • It is guaranteed that there will be queries of the 1-st and 2-nd type only.

    The input limits for scoring 100 points are (subproblems E1+E2+E3):

    • No extra limitations.

    Output

    For each query print the calculated sum modulo 1000000000 (109).

    Examples

    Input
    5 5
    1 3 1 2 4
    2 1 4
    2 1 5
    2 2 4
    1 3 10
    2 1 5
    Output
    12
    32
    8
    50
    Input
    5 4
    1 3 1 2 4
    3 1 4 1
    2 2 4
    1 2 10
    2 1 5
    Output
    12
    45


    最近好多 数学 + 数据结构 的题啊qwq,既要动脑子又要调代码qwq
    斐波那契数列有一个非常好的性质: f[i] = f[i-1] + f[i-2]
    这不是废话吗。。。。但是这个能推出来另一个东西 -> f[i] = f[k]*f[i-k] + f[k-1]*f[i-k-1] (这个式子是对于f[0]=f[1]=1的斐波那契数列而言的)。
    有了这个,我们就可以随心所欲的通过 ∑f[i]*a[i+l] 和 ∑f[i+1]*a[i+l] 来构造任意 ∑f[i+d]*a[i+l] 啦(也就是程序中的Get函数)。

    然后随便打打标机(别忘了下传维护之类的),随便合并合并子树,就可以A啦(但是要写一坨子qwq)
    (最近压行成瘾qwq)

    #include<bits/stdc++.h>
    #define ll long long
    using namespace std;
    const int maxn=2*1e5,ha=1e9;
    int f[maxn+5],F[maxn+5],a[maxn+5],le,ri,n,m,w,O;
    int sum[maxn*4+5][2],tag[maxn*4+5],L[maxn*4+5],A;
    inline void ADD(int &x,int y){ x+=y; if(x>=ha) x-=ha;}
    inline int add(int x,int y){ x+=y; return x>=ha?x-ha:x;}
    inline void init(){ f[0]=F[0]=1; for(int i=1;i<=maxn;i++) f[i]=add(f[i-1],f[i-2]),F[i]=add(f[i],F[i-1]);}
    inline int Get(int o,int Derta){ return Derta<2?(Derta?sum[o][1]:sum[o][0]):add(sum[o][0]*(ll)f[Derta-2]%ha,sum[o][1]*(ll)f[Derta-1]%ha);}
    inline void QADD(int o,int Derta){ ADD(tag[o],Derta),ADD(sum[o][0],Derta*(ll)F[L[o]-1]%ha),ADD(sum[o][1],Derta*(ll)add(F[L[o]],ha-1)%ha);}
    inline void pushdown(int o,int lc,int rc){ if(tag[o]){ QADD(lc,tag[o]),QADD(rc,tag[o]),tag[o]=0;}}
    inline void Merge(int o,int lc,int rc,int Derta){
    	sum[o][0]=add(sum[lc][0],Get(rc,Derta));
    	sum[o][1]=add(sum[lc][1],Get(rc,Derta+1));
    }
    
    void build(int o,int l,int r){
    	L[o]=r-l+1;
    	if(l==r){ sum[o][0]=sum[o][1]=a[l]; return;}
    	int mid=l+r>>1,lc=o<<1,rc=(o<<1)|1;
    	build(lc,l,mid);
    	build(rc,mid+1,r);
    	Merge(o,lc,rc,mid+1-l);
    }
    
    void update1(int o,int l,int r){
    	if(l==r){ sum[o][0]=sum[o][1]=w; return;}
    	int mid=l+r>>1,lc=o<<1,rc=(o<<1)|1;
    	pushdown(o,lc,rc);
    	if(le<=mid) update1(lc,l,mid);
    	else update1(rc,mid+1,r);
    	Merge(o,lc,rc,mid+1-l);
    }
    
    void update2(int o,int l,int r){
    	if(l>=le&&r<=ri){ QADD(o,w); return;}
    	int mid=l+r>>1,lc=o<<1,rc=(o<<1)|1;
    	pushdown(o,lc,rc);
    	if(le<=mid) update2(lc,l,mid);
    	if(ri>mid) update2(rc,mid+1,r);
    	Merge(o,lc,rc,mid+1-l);	
    }
    
    void query(int o,int l,int r){
    	if(l>=le&&r<=ri){ ADD(A,Get(o,l-le)); return;}
    	int mid=l+r>>1,lc=o<<1,rc=(o<<1)|1;
    	pushdown(o,lc,rc);
    	if(le<=mid) query(lc,l,mid);
    	if(ri>mid) query(rc,mid+1,r);
    }
    
    inline void solve(){
    	while(m--){
    		scanf("%d",&O);
    		if(O==1){ scanf("%d%d",&le,&w),update1(1,1,n);}
    		else if(O==2){ scanf("%d%d",&le,&ri),A=0,query(1,1,n),printf("%d
    ",A);}
    		else{ scanf("%d%d%d",&le,&ri,&w),update2(1,1,n);}
    	}
    }
    
    int main(){
    	init();
    	scanf("%d%d",&n,&m);
    	for(int i=1;i<=n;i++) scanf("%d",a+i);
    	build(1,1,n);
    	solve();
    	return 0;
    }
    

      

     
  • 相关阅读:
    Spring2.5.6学习笔记DI的两种注入方式
    hsqldb2.2.9文档学习笔记之使用hsqldb
    Spring2.5.6学习笔记实例化bean的几种方法
    eclipse4.2插件开发之Hello!EclipsePlugin
    spring boot redis 多数据源配置 spring boot data redis
    docker安装mysql
    docker安装rabbitmq
    docker命令积累
    mysql8 免安装版 下载安装
    docker安装nginx
  • 原文地址:https://www.cnblogs.com/JYYHH/p/8982220.html
Copyright © 2011-2022 走看看