zoukankan      html  css  js  c++  java
  • numpy

    np.sum()

    http://blog.csdn.net/ikerpeng/article/details/17026011

    我们平时用的sum应该是默认的axis=0 就是普通的相加 (对不起,写的不好,看下面的)

    而当加入axis=1以后就是将一个矩阵的每一行向量相加

    例如:

    import numpy as np

    np.sum([[0,1,2],[2,1,3]],axis=1)的结果就是:array([3,6])

    希望可以帮到你 呵呵

    Sorry,以前学习阶段写东西比较随意,现在补充完善一下:

    1. python 自己的sum()

    输入的参数首先是[]

    [python] view plain copy
     
    1. >>> sum([0,1,2])  
    2. 3  
    3. >>> sum([0,1,2],3)  
    4. 6  
    5. >>> sum([0,1,2],[3,2,1])  
    6. Traceback (most recent call last):  
    7.   File "<stdin>", line 1, in <module>  
    8. TypeError: can only concatenate list (not "int") to list  



    2.python的 numpy当中

    现在对于数据的处理更多的还是numpy。没有axis参数表示全部相加,axis=0表示按列相加,axis=1表示按照行的方向相加

    [python] view plain copy
     
      1. >>> import numpy as np  
      2. >>> a=np.sum([[0,1,2],[2,1,3]])  
      3. >>> a  
      4. 9  
      5. >>> a.shape  
      6. ()  
      7. >>> a=np.sum([[0,1,2],[2,1,3]],axis=0)  
      8. >>> a  
      9. array([2, 2, 5])  
      10. >>> a.shape  
      11. (3,)  
      12. >>> a=np.sum([[0,1,2],[2,1,3]],axis=1)  
      13. >>> a  
      14. array([3, 6])  
      15. >>> a.shape  
      16. (2,)  

    http://www.cnblogs.com/100thMountain/p/4719488.html

    numpy.sum

    numpy.sum(aaxis=Nonedtype=Noneout=Nonekeepdims=False)[source]

    Sum of array elements over a given axis.

    Parameters:

    a : array_like

    Elements to sum.

    axis : None or int or tuple of ints, optional

    Axis or axes along which a sum is performed. The default (axis = None) is perform a sum over all the dimensions of the input array. axis may be negative, in which case it counts from the last to the first axis.

    New in version 1.7.0.

    If this is a tuple of ints, a sum is performed on multiple axes, instead of a single axis or all the axes as before.

    dtype : dtype, optional

    The type of the returned array and of the accumulator in which the elements are summed. By default, the dtype of a is used. An exception is when a has an integer type with less precision than the default platform integer. In that case, the default platform integer is used instead.

    out : ndarray, optional

    Array into which the output is placed. By default, a new array is created. If out is given, it must be of the appropriate shape (the shape of a with axis removed, i.e., numpy.delete(a.shape, axis)). Its type is preserved. See doc.ufuncs (Section “Output arguments”) for more details.

    keepdims : bool, optional

    If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original arr.

    Returns:

    sum_along_axis : ndarray

    An array with the same shape as a, with the specified axis removed. If a is a 0-d array, or if axis is None, a scalar is returned. If an output array is specified, a reference to out is returned.

    See also

    ndarray.sum
    Equivalent method.
    cumsum
    Cumulative sum of array elements.
    trapz
    Integration of array values using the composite trapezoidal rule.

    meanaverage

    Notes

    Arithmetic is modular when using integer types, and no error is raised on overflow.

    Examples

    >>>
    >>> np.sum([0.5, 1.5])
    2.0
    >>> np.sum([0.5, 0.7, 0.2, 1.5], dtype=np.int32)
    1
    >>> np.sum([[0, 1], [0, 5]])
    6
    >>> np.sum([[0, 1], [0, 5]], axis=0)    #axis=0是按列求和
    array([0, 6])
    >>> np.sum([[0, 1], [0, 5]], axis=1)    #axis=1 是按行求和
    array([1, 5])
    

    If the accumulator is too small, overflow occurs:

    >>>
    >>> np.ones(128, dtype=np.int8).sum(dtype=np.int8)
    -128
  • 相关阅读:
    当你开始学习编程时,你最希望知道什么?我想起来的只有27件事!
    神父说,要有光,要有码农,于是十大天神创造了宏大的编程界!
    我今天就要说HTML它就是一门编程语言!只有外行才说它是超文本标记语言!
    【源码分享】用C++实现通讯录管理系统!功能齐全,实属精品!
    虎牙员工自曝被公司HR带着五个人抬出公司扔到门外!虎牙回应:他简历造假!
    C与C++的互相调用!就像大学宿舍一样,我用你的,你用我的!
    为什么你的简历总会石沉大海!一定要真实,切勿造假!
    Python3列表
    Python3元组
    线程回收
  • 原文地址:https://www.cnblogs.com/JZ-Ser/p/7593797.html
Copyright © 2011-2022 走看看