将特征在xvector神经网络模型中前向传播,并写出输出向量。我们将说话人识别的特定神经网络结构的输出向量或embedding称之为"Xvector"。该网络结构包括:帧级别的多个前馈层、帧级别之上的聚合层、统计池化层以及段级别的附加层。通常在统计池化层之后的输出层提取xvector。默认情况下,每个语句生成一个xvector。根据需要,可以chunk中提取多个xvector并求平均,以生成单个矢量。
Usage: nnet3-xvector-compute [options] <raw-nnet-in> <features-rspecifier> <vector-wspecifier>
e.g.: nnet3-xvector-compute final.raw scp:feats.scp ark:nnet_prediction.ark
对一个语音特征chunk,生成一个xvector
static void RunNnetComputation(const MatrixBase<BaseFloat> &features, const Nnet &nnet, CachingOptimizingCompiler *compiler, Vector<BaseFloat> *xvector) { ComputationRequest request; request.need_model_derivative = false; request.store_component_stats = false; request.inputs.push_back( IoSpecification("input", 0, features.NumRows())); IoSpecification output_spec; output_spec.name = "output"; output_spec.has_deriv = false;
将output-node所请求的输出Cindex索引数限制为1,这样,一个chunk(segment)只输出一个结果,即xvector output_spec.indexes.resize(1);
request.outputs.resize(1); request.outputs[0].Swap(&output_spec); std::shared_ptr<const NnetComputation> computation(std::move(compiler->Compile(request))); Nnet *nnet_to_update = NULL; // we're not doing any update. NnetComputer computer(NnetComputeOptions(), *computation, nnet, nnet_to_update); CuMatrix<BaseFloat> input_feats_cu(features); computer.AcceptInput("input", &input_feats_cu); computer.Run(); CuMatrix<BaseFloat> cu_output; //输出的cu_output为行数为1的矩阵 computer.GetOutputDestructive("output", &cu_output); xvector->Resize(cu_output.NumCols()); //取输出矩阵的第一行向量作为xvector xvector->CopyFromVec(cu_output.Row(0)); } |
ParseOptions po(usage); Timer timer;
NnetSimpleComputationOptions opts; CachingOptimizingCompilerOptions compiler_config;
opts.acoustic_scale = 1.0; // by default do no scaling in this recipe.
std::string use_gpu = "no"; int32 chunk_size = -1, min_chunk_size = 100; //若帧组不足一个chunk,则对input进行左右padding。 bool pad_input = true;
opts.Register(&po); compiler_config.Register(&po);
po.Register("use-gpu", &use_gpu, "yes|no|optional|wait, only has effect if compiled with CUDA"); po.Register("chunk-size", &chunk_size, "If set, extracts xectors from specified chunk-size, and averages. " "If not set, extracts an xvector from all available features."); po.Register("min-chunk-size", &min_chunk_size, "Minimum chunk-size allowed when extracting xvectors."); po.Register("pad-input", &pad_input, "If true, duplicate the first and " "last frames of the input features as required to equal min-chunk-size.");
po.Read(argc, argv);
if (po.NumArgs() != 3) { po.PrintUsage(); exit(1); }
#if HAVE_CUDA==1 CuDevice::Instantiate().SelectGpuId(use_gpu); #endif
std::string nnet_rxfilename = po.GetArg(1), feature_rspecifier = po.GetArg(2), vector_wspecifier = po.GetArg(3);
Nnet nnet; ReadKaldiObject(nnet_rxfilename, &nnet); SetBatchnormTestMode(true, &nnet); SetDropoutTestMode(true, &nnet); CollapseModel(CollapseModelConfig(), &nnet);
CachingOptimizingCompiler compiler(nnet, opts.optimize_config, compiler_config);
BaseFloatVectorWriter vector_writer(vector_wspecifier);
int32 num_success = 0, num_fail = 0; int64 frame_count = 0; int32 xvector_dim = nnet.OutputDim("output");
SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier);
std::string utt = feature_reader.Key(); const Matrix<BaseFloat> &features (feature_reader.Value()); if (features.NumRows() == 0) { KALDI_WARN << "Zero-length utterance: " << utt; num_fail++; continue; } int32 num_rows = features.NumRows(), feat_dim = features.NumCols(), this_chunk_size = chunk_size; if (!pad_input && num_rows < min_chunk_size) { KALDI_WARN << "Minimum chunk size of " << min_chunk_size << " is greater than the number of rows " << "in utterance: " << utt; num_fail++; continue; } else if (num_rows < chunk_size) { KALDI_LOG << "Chunk size of " << chunk_size << " is greater than " << "the number of rows in utterance: " << utt << ", using chunk size of " << num_rows; this_chunk_size = num_rows; } else if (chunk_size == -1) { this_chunk_size = num_rows; } //num_chunks=1 int32 num_chunks = ceil( num_rows / static_cast<BaseFloat>(this_chunk_size)); Vector<BaseFloat> xvector_avg(xvector_dim, kSetZero); BaseFloat tot_weight = 0.0;
// Iterate over the feature chunks. for (int32 chunk_indx = 0; chunk_indx < num_chunks; chunk_indx++) { //若接近输入的末尾,需要考虑剩余的帧是否足以凑足一个chunk。 int32 offset = std::min( this_chunk_size, num_rows - chunk_indx * this_chunk_size); if (!pad_input && offset < min_chunk_size) continue; SubMatrix<BaseFloat> sub_features( features, chunk_indx * this_chunk_size, offset, 0, feat_dim); Vector<BaseFloat> xvector; tot_weight += offset;
// Pad input if the offset is less than the minimum chunk size if (pad_input && offset < min_chunk_size) { Matrix<BaseFloat> padded_features(min_chunk_size, feat_dim); int32 left_context = (min_chunk_size - offset) / 2; int32 right_context = min_chunk_size - offset - left_context; for (int32 i = 0; i < left_context; i++) { padded_features.Row(i).CopyFromVec(sub_features.Row(0)); } for (int32 i = 0; i < right_context; i++) { padded_features.Row(min_chunk_size - i - 1).CopyFromVec(sub_features.Row(offset - 1)); } padded_features.Range(left_context, offset, 0, feat_dim).CopyFromMat(sub_features); //一个chunk生成一个xvector RunNnetComputation(padded_features, nnet, &compiler, &xvector); } else { RunNnetComputation(sub_features, nnet, &compiler, &xvector); } //将所有chunk的xvectors进行累加 xvector_avg.AddVec(offset, xvector); } //求所有chunk的平均xvector xvector_avg.Scale(1.0 / tot_weight); vector_writer.Write(utt, xvector_avg);
frame_count += features.NumRows(); num_success++; }
|