zoukankan      html  css  js  c++  java
  • PAT (Advanced Level) Practice 1150 Travelling Salesman Problem (25分) (正常思路)

    1.题目

    The "travelling salesman problem" asks the following question: "Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city and returns to the origin city?" It is an NP-hard problem in combinatorial optimization, important in operations research and theoretical computer science. (Quoted from "https://en.wikipedia.org/wiki/Travelling_salesman_problem".)

    In this problem, you are supposed to find, from a given list of cycles, the one that is the closest to the solution of a travelling salesman problem.

    Input Specification:

    Each input file contains one test case. For each case, the first line contains 2 positive integers N (2<N≤200), the number of cities, and M, the number of edges in an undirected graph. Then M lines follow, each describes an edge in the format City1 City2 Dist, where the cities are numbered from 1 to N and the distance Dist is positive and is no more than 100. The next line gives a positive integer K which is the number of paths, followed by K lines of paths, each in the format:

    n C​1​​ C​2​​ ... C​n​​

    where n is the number of cities in the list, and C​i​​'s are the cities on a path.

    Output Specification:

    For each path, print in a line Path X: TotalDist (Description) where X is the index (starting from 1) of that path, TotalDist its total distance (if this distance does not exist, output NA instead), and Description is one of the following:

    • TS simple cycle if it is a simple cycle that visits every city;
    • TS cycle if it is a cycle that visits every city, but not a simple cycle;
    • Not a TS cycle if it is NOT a cycle that visits every city.

    Finally print in a line Shortest Dist(X) = TotalDist where X is the index of the cycle that is the closest to the solution of a travelling salesman problem, and TotalDist is its total distance. It is guaranteed that such a solution is unique.

    Sample Input:

    6 10
    6 2 1
    3 4 1
    1 5 1
    2 5 1
    3 1 8
    4 1 6
    1 6 1
    6 3 1
    1 2 1
    4 5 1
    7
    7 5 1 4 3 6 2 5
    7 6 1 3 4 5 2 6
    6 5 1 4 3 6 2
    9 6 2 1 6 3 4 5 2 6
    4 1 2 5 1
    7 6 1 2 5 4 3 1
    7 6 3 2 5 4 1 6
    

    Sample Output:

    Path 1: 11 (TS simple cycle)
    Path 2: 13 (TS simple cycle)
    Path 3: 10 (Not a TS cycle)
    Path 4: 8 (TS cycle)
    Path 5: 3 (Not a TS cycle)
    Path 6: 13 (Not a TS cycle)
    Path 7: NA (Not a TS cycle)
    Shortest Dist(4) = 8

    2/题目分析

    用二维数组保存图,然后遍历下面给的顺序,节点重复访问:不是simple ;节点间距离INF、存在节点未访问:不是circle(分类输出)

    3.代码

    #include<iostream>
    #include<cstdio>
    using namespace std;
    #define MAX 201
    #define INF 1000000
    int edges[MAX][MAX];
    int main()
    {
    	int n, m;
    	scanf("%d %d", &n, &m);
    	for (int i = 0; i < MAX; i++)
    	{
    		for (int j = 0; j < MAX; j++)
    		{
    			if (i != j)
    				edges[i][j] = INF;
    			else edges[i][j] = 0;
    		}
    	}
    	for (int i = 1; i <= m; i++)
    	{
    		int a, b,c;
    		scanf("%d %d %d", &a, &b, &c);
    		edges[a][b] = edges[b][a] = c;
    	}
    	int k,min=9999999,mini;
    	scanf("%d", &k);
    	for (int i = 1; i <=k; i++)
    	{
    		int amount,c,d,count=0;
    		bool iscircle = true;
    		bool issimple = true;
    		int visited[MAX] = { 0 };
    		scanf("%d", &amount);
    		scanf("%d", &c);
    		for (int j = 1; j < amount; j++)
    		{
    			scanf("%d", &d);
    			if (visited[d] == 1) { issimple = false; }
    			if (edges[c][d] == INF) { iscircle = false; }
    			visited[d] = 1;
    			count += edges[c][d];
    			c = d;
    			
    		}
    		for (int j = 1; j <= n; j++)
    		{
    			if (visited[j] == 0) { iscircle = false; break; }
    		}
    		if (iscircle) { if (min > count) { min = count; mini = i; } }
    		if (!iscircle) {if(count>=INF)printf("Path %d: NA (Not a TS cycle)
    ", i);else printf("Path %d: %d (Not a TS cycle)
    ", i,count); continue; }
    		if (!issimple) { printf("Path %d: %d (TS cycle)
    ", i, count); continue; }
    		printf("Path %d: %d (TS simple cycle)
    ", i, count);
    	}
    	printf("Shortest Dist(%d) = %d
    ", mini, min);
    }
  • 相关阅读:
    案例(2)-- 线程不安全对象(SimpleDateFormat)
    案例(1)-- OOM异常
    jvm--工具
    死锁的产生以及定位死锁
    TCP--粘包拆包,netty的解决方式
    netty--处理器
    AtomicIntegerFieldUpdater和AtomicInteger
    NIO--ByteBuf
    Pipeline
    吴恩达机器学习笔记(四) —— BP神经网络
  • 原文地址:https://www.cnblogs.com/Jason66661010/p/12788893.html
Copyright © 2011-2022 走看看