zoukankan      html  css  js  c++  java
  • Panel(面板)数据结构

    Pandas库中除了Series, DataFrame这两种常用数据结构外,还有一种Panel数据结构,通常可以用一个由DataFrame对象组成的字典或者一个三维数组来创建Panel对象。

    1 # -*- coding: utf-8 -*-
    2 """
    3 Created on Sat Mar 26 18:01:05 2016
    4 
    5 @author: Jeremy
    6 """
    7 import numpy as np
    8 from pandas import Series, DataFrame, Panel
    9 import pandas as pd
    1 #用一个包含DataFrame的字典来创建Panel对象
    2 df = np.random.binomial(100, 0.95,(9,2))
    3 dm = np.random.binomial(100, 0.95,(12,2))
    4 dff = DataFrame(df, columns = ['Physics', 'Math'])
    5 dfm = DataFrame(dm, columns = ['Physics', 'Math'])
    6 score_panel = Panel({'Girls':dff, 'Boys':dfm})

    print()方法来查看创建的Panel对象score_panel信息:Panel对象有Item axis, Major_axis axis, Minor_axis axis 三个轴,并给出了三个轴的维度和数据大小信息:2*12*2。

    >>> print(score_panel)
    <class 'pandas.core.panel.Panel'>
    Dimensions: 2 (items) x 12 (major_axis) x 2 (minor_axis)
    Items axis: Boys to Girls
    Major_axis axis: 0 to 11
    Minor_axis axis: Physics to Math

    Panel对象索引和二维数组及数据框类似,默认第一个轴为Item axis,可以直接对其进行索引:

    1 #提取Girls组学生的物理和数学成绩
    2 score_panel['Girls']
        Physics  Math
    0        91    96
    1        97    98
    2        98    97
    3        93    97
    4        95    97
    5        97    95
    6        95    95
    7        90    96
    8        92    96
    9       NaN   NaN
    10      NaN   NaN
    11      NaN   NaN


    基于ix的标签索引被推广到三个维度,因此我们在三个维度上提取我们想要的数据,例如:

    1 '''
    2 找出数学成绩不小于93的女生的物理和数学成绩
    3 并返回一个数据框DataFrame
    4 '''
    5 score_panel.ix['Girls', score_panel.Girls.Math >= 93, :]
       Physics  Math
    0       91    96
    1       97    98
    2       98    97
    3       93    97
    4       95    97
    5       97    95
    6       95    95
    7       90    96
    8       92    96

    下面我们通过建立一个包含多只股票不同时期的股票价格数据的Panel对象来介绍一个Panel对象方法。

    1 import pandas.io.data as web
    2 pdata = Panel(dict((symbol, web.DataReader(symbol, data_source = 'yahoo',
    3 start = '1/1/2009', end = '6/1/2012')) for symbol in ['AAPL', 'GOOG', 'MSFT', 'DELL']))
    4 print(pdata)
    <class 'pandas.core.panel.Panel'>
    Dimensions: 4 (items) x 868 (major_axis) x 6 (minor_axis)
    Items axis: AAPL to MSFT
    Major_axis axis: 2009-01-02 00:00:00 to 2012-06-01 00:00:00
    Minor_axis axis: Open to Adj Close
    1 #提取’2012-06-01‘四支股票的行情数据
    2 pdata.ix[:, '2012-06-01', :]
        AAPL            DELL            GOOG             MSFT
    Open       5.691600e+02        12.15000      571.790972        28.760000
    High       5.726500e+02        12.30000      572.650996        28.959999
    Low        5.605200e+02        12.04500      568.350996        28.440001
    Close      5.609900e+02        12.07000      570.981000        28.450001
    Volume     1.302469e+08  19397600.00000  6138700.000000  56634300.000000
    Adj Close  7.421812e+01        11.67592      285.205295        25.598227
    1 #提取四支股票'2012-05-30'至'2012-06-01'的收盘价格(Close)数据
    2 pdata.ix[:,'2012-05-30':'2012-06-01', 'Close']
             AAPL   DELL        GOOG       MSFT
    Date                                                
    2012-05-30  579.169998  12.56  588.230992  29.340000
    2012-05-31  577.730019  12.33  580.860990  29.190001
    2012-06-01  560.989983  12.07  570.981000  28.450001
    1 #提取四支股票'2012-05-30'至'2012-06-01'的行情数据
    2 pdata.ix[:, '2012-05-30':'2012-06-01', :]
    <class 'pandas.core.panel.Panel'>
    Dimensions: 4 (items) x 3 (major_axis) x 6 (minor_axis)
    Items axis: AAPL to MSFT
    Major_axis axis: 2012-05-30 00:00:00 to 2012-06-01 00:00:00
    Minor_axis axis: Open to Adj Close

    这里返回的结果与上面不同的原因是这里我们返回的结果任然是一个Panel对象,上面提取的行情数据只包括了收盘价格,第三个维度(坐标轴)消失了,结果返回的是一个二维的数据框DataFrame对象,如果我们希望像DataFrame一样看到整个完整的数据信息,可以用to_frame()方法,它将面板数据以一种“堆积式”的DataFrame形式呈现:

    1 #以DataFrame形式呈现面板数据
    2 pdata.ix[:, '2012-05-30':'2012-06-01', :].to_frame()
      AAPL            DELL            GOOG  
    Date       minor                                                     
    2012-05-30 Open       5.692000e+02        12.59000      588.161028   
               High       5.799900e+02        12.70000      591.901014   
               Low        5.665600e+02        12.46000      583.530999   
               Close      5.791700e+02        12.56000      588.230992   
               Volume     1.323574e+08  19787800.00000  3827600.000000   
               Adj Close  7.662330e+01        12.14992      293.821674   
    2012-05-31 Open       5.807400e+02        12.53000      588.720982   
               High       5.815000e+02        12.54000      590.001032   
               Low        5.714600e+02        12.33000      579.001013   
               Close      5.777300e+02        12.33000      580.860990   
               Volume     1.229186e+08  19955600.00000  5958800.000000   
               Adj Close  7.643280e+01        11.92743      290.140354   
    2012-06-01 Open       5.691600e+02        12.15000      571.790972   
               High       5.726500e+02        12.30000      572.650996   
               Low        5.605200e+02        12.04500      568.350996   
               Close      5.609900e+02        12.07000      570.981000   
               Volume     1.302469e+08  19397600.00000  6138700.000000   
               Adj Close  7.421812e+01        11.67592      285.205295   
    
                                     MSFT  
    Date       minor                       
    2012-05-30 Open             29.350000  
               High             29.480000  
               Low              29.120001  
               Close            29.340000  
               Volume     41585500.000000  
               Adj Close        26.399015  
    2012-05-31 Open             29.299999  
               High             29.420000  
               Low              28.940001  
               Close            29.190001  
               Volume     39134000.000000  
               Adj Close        26.264051  
    2012-06-01 Open             28.760000  
               High             28.959999  
               Low              28.440001  
               Close            28.450001  
               Volume     56634300.000000  
               Adj Close        25.598227  

    DataFrame有一个相应的to_panel()方法,它是to_frame()的逆运算:

    1 stacked = pdata.ix[:, '2012-05-30':'2012-06-01', :].to_frame()
    2 stacked.to_panel()
    <class 'pandas.core.panel.Panel'>
    Dimensions: 4 (items) x 3 (major_axis) x 6 (minor_axis)
    Items axis: AAPL to MSFT
    Major_axis axis: 2012-05-30 00:00:00 to 2012-06-01 00:00:00
    Minor_axis axis: Open to Adj Close

    总结:Panel对象的一个好处是我们可以通过建立一个Panel对象来保存多层次/多维度的数据,当我们需要任意维度的数据来进行建模分析时,随时可以提取出一个Series或者DataFrame。
    参考资料:

    《利用python进行数据分析》 Wes McKinney著

    Computational Statistics in Python : http://people.duke.edu/~ccc14/sta-663/index.html

       

       

       

       

  • 相关阅读:
    0125——时钟
    0125——动画2
    0124——动画1
    0124——KVC KVO模式
    0123——单例模式
    0122——简单小动画+微博简单模拟2
    0122——UITabBarController
    0119——UIImageView的一些属性 和 简单动画实现
    12月28号 ios设计简单操作
    12月25号 Category类别
  • 原文地址:https://www.cnblogs.com/JeremyTin/p/5324536.html
Copyright © 2011-2022 走看看