题目链接:BZOJ - 3894
题目分析
最小割模型,设定一个点与 S 相连表示选文,与 T 相连表示选理。
那么首先要加上所有可能获得的权值,然后减去最小割,即不能获得的权值。
那么对于每个点,从 S 向它连权值为它选文的价值的边,从它向 T 连权值为它选理的价值的边。
对于一个点,它和与它相邻的点构成了一个集合,这个集合如果都选文,可以获得一个价值v1,如果都选理,可以获得一个价值 v2。
只要这个集合中有一个点选文,就无法获得 v2,只要有一个点选理,就无法获得 v1。
那么处理方式就是,新开一个点,从它向 T 连 v2 的边,从这个集合中的每个点向它连 INF 边。这样,只要集合中有一个点选文,就必须割掉 v2。
v1的处理同理。
代码
#include <iostream> #include <cstdlib> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> using namespace std; const int MaxN = 100 + 5, MaxNode = 30000 + 15, Dx[5] = {0, 0, 1, -1}, Dy[5] = {1, -1, 0, 0}, INF = 999999999; int n, m, S, T, Tot, Sum, MaxFlow; int Idx[MaxN][MaxN], Wk[MaxN][MaxN][3], Lk[MaxN][MaxN][3], Num[MaxNode], d[MaxNode]; struct Edge { int v, w; Edge *Next, *Other; } E[MaxNode * 16], *P = E, *Point[MaxNode], *Last[MaxNode]; inline void AddEdge(int x, int y, int z) { Edge *Q = ++P; ++P; P -> v = y; P -> w = z; P -> Next = Point[x]; Point[x] = P; P -> Other = Q; Q -> v = x; Q -> w = 0; Q -> Next = Point[y]; Point[y] = Q; Q -> Other = P; } inline int gmin(int a, int b) {return a < b ? a : b;} int DFS(int Now, int Flow) { if (Now == T) return Flow; int ret = 0; for (Edge *j = Last[Now]; j; j = j -> Next) if (j -> w && d[Now] == d[j -> v] + 1) { Last[Now] = j; int p = DFS(j -> v, gmin(j -> w, Flow - ret)); ret += p; j -> w -= p; j -> Other -> w += p; if (ret == Flow) return ret; } if (d[S] >= Tot) return ret; if (--Num[d[Now]] == 0) d[S] = Tot; ++Num[++d[Now]]; Last[Now] = Point[Now]; return ret; } inline bool Inside(int x, int y) { if (x < 1 || x > n) return false; if (y < 1 || y > m) return false; return true; } int main() { scanf("%d%d", &n, &m); for (int i = 1; i <= n; ++i) for (int j = 1; j <= m; ++j) Idx[i][j] = (i - 1) * m + j; for (int i = 1; i <= n; ++i) for (int j = 1; j <= m; ++j) scanf("%d", &Wk[i][j][0]); for (int i = 1; i <= n; ++i) for (int j = 1; j <= m; ++j) scanf("%d", &Lk[i][j][0]); for (int i = 1; i <= n; ++i) for (int j = 1; j <= m; ++j) scanf("%d", &Wk[i][j][1]); for (int i = 1; i <= n; ++i) for (int j = 1; j <= m; ++j) scanf("%d", &Lk[i][j][1]); Tot = n * m * 3; S = ++Tot; T = ++Tot; for (int i = 1; i <= n; ++i) for (int j = 1; j <= m; ++j) { Sum += Wk[i][j][0] + Wk[i][j][1]; Sum += Lk[i][j][0] + Lk[i][j][1]; AddEdge(S, Idx[i][j], Wk[i][j][0]); AddEdge(Idx[i][j], T, Lk[i][j][0]); int x, y; for (int k = 0; k < 4; ++k) { x = i + Dx[k]; y = j + Dy[k]; if (!Inside(x, y)) continue; AddEdge(Idx[x][y], n * m + Idx[i][j], INF); AddEdge(n * m * 2 + Idx[i][j], Idx[x][y], INF); } AddEdge(Idx[i][j], n * m + Idx[i][j], INF); AddEdge(n * m * 2 + Idx[i][j], Idx[i][j], INF); AddEdge(n * m + Idx[i][j], T, Lk[i][j][1]); AddEdge(S, n * m * 2 + Idx[i][j], Wk[i][j][1]); } MaxFlow = 0; memset(d, 0, sizeof(d)); memset(Num, 0, sizeof(Num)); Num[0] = Tot; for (int i = 1; i <= Tot; ++i) Last[i] = Point[i]; while (d[S] < Tot) MaxFlow += DFS(S, INF); printf("%d ", Sum - MaxFlow); return 0; }