zoukankan      html  css  js  c++  java
  • calcBackProject

    对于检测特定区域,用反向投影直方图可以识别

    void cv::calcBackProject

    ( const Mat * images, int nimages,

    const int * channels,
    InputArray hist,
    OutputArray backProject,
    const float ** ranges,
    double scale = 1,
    bool uniform = true
    )

    const Mat* images:输入图像,图像深度必须位CV_8U,CV_16U或CV_32F中的一种,尺寸相同,每一幅图像都可以有任意的通道数
    int nimages:输入图像的数量
    const int* channels:用于计算反向投影的通道列表,通道数必须与直方图维度相匹配,第一个数组的通道是从0到image[0].channels()-1,第二个数组通道从图像image[0].channels()到image[0].channels()+image[1].channels()-1计数
    InputArray hist:输入的直方图,直方图的bin可以是密集(dense)或稀疏(sparse)
    OutputArray backProject:目标反向投影输出图像,是一个单通道图像,与原图像有相同的尺寸和深度
    const float ranges**:直方图中每个维度bin的取值范围
    double scale=1:可选输出反向投影的比例因子
    bool uniform=true:直方图是否均匀分布(uniform)的标识符,有默认值true

    返回原图,颜色暗的是低概率,亮的是大概率

    使用统计学的语言,BackProjection中存储的数值代表了测试图像中该像素属于皮肤区域的概率。以上图为例,亮的区域是皮肤区域的可能性更大,而暗的区域则表示更低的可能性。

  • 相关阅读:
    文件权限命令
    复制、移动文件及目录命令
    创建、删除文件及目录命令
    绝对路径和相对路径
    查找文件命令
    链接命令
    文本搜索命令
    编辑器 vim
    有参装饰器与迭代器
    闭包函数与装饰器
  • 原文地址:https://www.cnblogs.com/KAVEI/p/14689666.html
Copyright © 2011-2022 走看看