zoukankan      html  css  js  c++  java
  • Maxmum subsequence sum problem

    We have a lot of ways to solve the maximum subsequence sum problem, but different ways take different time.

    1、Brute-force algorithm

    int maxSubSum1(const vector<int> &a)
    {
    	int maxSum=0;
    	
    	for(int i=0;i<a.size();i++)
    		for(int j=i;j<a.size();j++)
    		{
    			int sum=0;
    			for(int k=i;k<=j;k++)
    				sum+=a[k];
    			
    			if(sum>maxSum)
    				maxSum=sum;
    		}
    		
    		return maxSum;
    }
    /*The running time is O(n^3)
    It takes too much time.
    */
    

    2、a little imporvement

    int maxSubSum2(const vector<int>& a )
    {
        int maxSum=0;
       
         for(int i=0;i<a.size();i++)
         {
              int sum=0;
         
              for(int j=i;j<a.size();j++)
              {
                    sum+=a[j];
                    if(maxSum<sum)
                    {
                         maxSum=sum;
                    }
              }
         }
    
         return maxSum;
    }
    

    3. Divide-conquer algorithm

    We can divide this problem into three parts:
    (1) First half;

    (2) cross the middle parts;

    (3) second part;

    What we need to do is to find the max sum of the three part.

    int max3(int a, int b, int c)
    {
    	if(a>b)
    	{
    		if(a>c)return a;
    		else return c;
    	}
    	else
    	{
    		if(c>b)return c;
    		else return b;
    	}
    }
    
    int maxSubSum3(cosnt vector<int >& a, int left, int right)
    {
         if(left==right)
            if(a[left]>0) return a[left];
            else return 0;
    
         int center= (left+right)/2;
         int maxLeftSum=maxSumRec(a, left, center);
         int maxRightSum=maxSumRec(a, center+1, right);
       
         int maxLeftBoderSum=0, leftBoderSum=0;
    	for(int i=center;i>=left;i--)
    	{
    		leftBoderSum+=a[i];
    		if(leftBoderSum>maxLeftBoderSum)
    			maxLeftBoderSum=leftBoderSum;
    	}
    	
    	int maxRightBoderSum=0, leftBoderSum=0;
    	for(int i=center+1;i<=right;i++)
    	{
    		rightBoderSum+=a[i];
    		if(rightBoderSum>maxRightBoderSum)
    			maxRightBoderSum=rightBoderSum;
    	}
    	
    	return max3(maxLeftSum, maxLeftBoderSum+maxRightBoderSum,maxRightSum);
    }
    

    4. The best algorithm

    If the start is negative, the sum of the subsequence can not be the max. Hence, any negative subsequence cannot possibly be a prefix of the optimal subsequence.

    int maxSubSum4(const vector<int> & a)
    {
    	int maxSum=0, sum=0;
    	
    	for(int i=0;i<a.size();i++)
    	{
    		sum+=a[i];
    		
    		if(sum>maxSum)
    			maxSum=sum;
    		else if(sum<0)
    			sum=0;
    	}
    	
    	return maxSum;
    }
    

      

  • 相关阅读:
    KNN算法
    从malloc中窥探Linux内存分配策略
    ECC校验原理以及在Nand Flash中的应用
    周大福、周六福、周生生等区分
    USB时钟为什么是48MHz
    NFS网络操作系统介绍以及相关应用
    办公技巧
    嵌入式设备中使用短信服务
    Android App测试要点
    Excel中 设置使得每行的颜色不一样
  • 原文地址:https://www.cnblogs.com/KennyRom/p/5994914.html
Copyright © 2011-2022 走看看