zoukankan      html  css  js  c++  java
  • 「2017 山东三轮集训 Day7」Easy

    一棵带边权的树,多次询问 $x$ 到编号为 $[l,r]$ 的点最短距离是多少

    $n leq 100000$

    sol:

    动态点分治,每层重心维护到所有点的距离

    查询的时候在管辖这个点的 log 层线段树里查就可以了

    因为这样每一层的答案只会漏而不会错,所以正确性有保障

    不会写点分治了...orz

    #include <bits/stdc++.h>
    #define LL long long
    #define rep(i, s, t) for (register int i = (s), i##end = (t); i <= i##end; ++i)
    #define dwn(i, s, t) for (register int i = (s), i##end = (t); i >= i##end; --i)
    using namespace std;
    inline int read() {
        int x = 0, f = 1;
        char ch;
        for (ch = getchar(); !isdigit(ch); ch = getchar())
            if (ch == '-')
                f = -f;
        for (; isdigit(ch); ch = getchar()) x = 10 * x + ch - '0';
        return x * f;
    }
    const int maxn = 200010, inf = 1e9;
    int n, m;
    int first[maxn], to[maxn << 1], nx[maxn << 1], val[maxn], cnt;
    inline void add(int u, int v, int w) {
        to[++cnt] = v;
        val[cnt] = w;
        nx[cnt] = first[u];
        first[u] = cnt;
    }
    int sig, root, size[maxn], pa[maxn], f[maxn], vis[maxn];
    inline void findroot(int x, int fa) {
        size[x] = 1;
        f[x] = 0;
        for (int i = first[x]; i; i = nx[i]) {
            if ((to[i] == fa) || (vis[to[i]]))
                continue;
            findroot(to[i], x);
            size[x] += size[to[i]];
            f[x] = max(f[x], size[to[i]]);
        }
        f[x] = max(f[x], sig - size[x]);
        if (f[x] < f[root])
            root = x;
    }
    inline void build(int x) {
        vis[x] = 1;
        for (int i = first[x]; i; i = nx[i]) {
            if (vis[to[i]])
                continue;
            root = 0;
            sig = size[to[i]];
            findroot(to[i], x);
            pa[root] = x;
            build(root);
        }
    }
    namespace sp_lca {
    int size[maxn], dep[maxn], fa[maxn], bl[maxn], dp[maxn];
    inline void dfs1(int x) {
        size[x] = 1;
        for (int i = first[x]; i; i = nx[i]) {
            if (to[i] == fa[x])
                continue;
            fa[to[i]] = x;
            dep[to[i]] = dep[x] + 1;
            dp[to[i]] = dp[x] + val[i];
            dfs1(to[i]);
            size[x] += size[to[i]];
        }
    }
    inline void dfs2(int x, int col) {
        int k = 0;
        bl[x] = col;
        for (int i = first[x]; i; i = nx[i])
            if (to[i] != fa[x] && size[to[i]] > size[k])
                k = to[i];
        if (!k)
            return;
        dfs2(k, col);
        for (int i = first[x]; i; i = nx[i])
            if (to[i] != fa[x] && to[i] != k)
                dfs2(to[i], to[i]);
    }
    inline void init() {
        dfs1(1);
        dfs2(1, 1);
    }
    inline int lca(int x, int y) {
        while (bl[x] != bl[y]) {
            if (dep[bl[x]] < dep[bl[y]])
                swap(x, y);
            x = fa[bl[x]];
        }
        return dep[x] < dep[y] ? x : y;
    }
    }  // namespace sp_lca
    inline int dis(int x, int y) { return sp_lca::dp[x] + sp_lca::dp[y] - (sp_lca::dp[sp_lca::lca(x, y)] << 1); }
    int rt[maxn], ls[maxn << 6], rs[maxn << 6], va[maxn << 6], ToT;
    inline void Insert(int &x, int l, int r, int pos, int v) {
        if (!x)
            x = ++ToT, va[x] = inf;
        va[x] = min(va[x], v);
        if (l == r)
            return;
        int mid = (l + r) >> 1;
        if (pos <= mid)
            Insert(ls[x], l, mid, pos, v);
        else
            Insert(rs[x], mid + 1, r, pos, v);
    }
    inline int query(int x, int l, int r, int L, int R) {
        if (!x)
            return inf;
        if (L <= l && r <= R)
            return va[x];
        int mid = (l + r) >> 1, res = inf;
        if (L <= mid)
            res = min(res, query(ls[x], l, mid, L, R));
        if (R > mid)
            res = min(res, query(rs[x], mid + 1, r, L, R));
        return res;
    }
    int main() {
        // freopen("a.in","r",stdin);
        // freopen("a.out","w",stdout);
        n = read();
        rep(i, 2, n) {
            int u = read(), v = read(), w = read();
            add(u, v, w);
            add(v, u, w);
        }
        f[0] = inf;
        root = 0;
        sig = n;
        findroot(1, 0);
        build(root);
        sp_lca ::init();
        rep(i, 1, n) for (int x = i; x; x = pa[x]) Insert(rt[x], 1, n, i, dis(x, i));
        // rep(i, 1, n) cout << pa[i] << endl;
        int q = read();
        while (q--) {
            int u = read(), v = read(), x = read();
            int cur = x, ans = inf;
            while (cur) {
                ans = min(ans, query(rt[cur], 1, n, u, v) + dis(cur, x));
                cur = pa[cur];
            }
            cout << ans << endl;
        }
    }
    View Code
  • 相关阅读:
    jquery 应用
    SQL Server表分区
    .NET Framework 各版本区别
    后台添加控件时,必须每次重画控件,才能从前台获取控件数据。
    SVN文件库移植(转)
    C# WebService 的缓存机制
    OpenGL C#绘图环境配置
    java 调用webservice的各种方法总结
    SQLServer锁的概述
    C# Word 类库
  • 原文地址:https://www.cnblogs.com/Kong-Ruo/p/10510795.html
Copyright © 2011-2022 走看看