zoukankan      html  css  js  c++  java
  • 线段树

    最近又开始刷线段树了。。还要改一下线段树的风格。

    poj 2155 Matrix

    二维线段树,区间更新,单点查询。。不会用新的代码写,用以前的风格写过了。。

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <algorithm>
     5 #include <cmath>
     6 
     7 using namespace std;
     8 
     9 #define LL long long
    10 #define eps 1e-8
    11 #define inf 0x3f3f3f3f
    12 #define MP make_pair
    13 #define N 1010
    14 #define M 200020
    15 #pragma comment(linker, "/STACK:1024000000,1024000000")
    16 #define Pi acos(-1.0)
    17 #define mod 1000000007
    18 #define lson l, mid, rt << 1
    19 #define rson mid + 1, r, rt << 1 | 1
    20 
    21 
    22 int sum[N<<2][N<<2], n;
    23 void update_y(int ly, int ry, int i, int l, int r, int rt){
    24     if(ly <= l && ry >= r){
    25         sum[i][rt] ^= 1; return ;
    26     }
    27     int mid = (l + r) >> 1;
    28     if(ly <= mid) update_y(ly, ry, i, lson);
    29     if(ry > mid)  update_y(ly, ry, i, rson);
    30 }
    31 void update_x(int lx, int rx, int ly, int ry, int l, int r, int rt){
    32     if(lx <= l && rx >= r){
    33         update_y(ly, ry, rt, 1, n, 1);
    34         return ;
    35     }
    36     int mid = (l + r) >> 1;
    37     if(lx <= mid) update_x(lx, rx, ly, ry, lson);
    38     if(rx > mid)  update_x(lx, rx, ly, ry, rson);
    39 }
    40 
    41 
    42 int query_y(int y, int i, int l, int r, int rt){
    43     int ret = 0;
    44     ret ^= sum[i][rt];
    45     if(l == r)
    46         return ret;
    47     int mid = (l + r) >> 1;
    48     if(y <= mid) ret ^= query_y(y, i, lson);
    49     else ret ^= query_y(y, i, rson);
    50     return ret;
    51 }
    52 int query_x(int x, int y, int l, int r, int rt){
    53     int ret = 0;
    54     ret ^= query_y(y, rt, 1, n, 1);
    55     if(l == r)
    56         return ret;
    57     int mid = (l + r) >> 1;
    58     if(x <= mid) ret ^= query_x(x, y, lson);
    59     else ret ^= query_x(x, y, rson);
    60     return ret;
    61 }
    62 int main(){
    63     int cas, ok = 0;
    64     scanf("%d", &cas);
    65     while(cas--){
    66         if(ok) puts("");
    67         ok = 1;
    68         int m;
    69         scanf("%d%d", &n, &m);
    70         memset(sum, 0, sizeof sum);
    71         while(m--){
    72             char ch[5];
    73             scanf("%s", ch);
    74             if(ch[0] == 'C'){
    75                 int x, y, xx, yy;
    76                 scanf("%d%d%d%d", &x, &y, &xx, &yy);
    77                 update_x(x, xx, y, yy, 1, n, 1);
    78             }
    79             else{
    80                 int x, y;
    81                 scanf("%d%d", &x, &y);
    82                 printf("%d
    ", query_x(x, y, 1, n, 1));
    83             }
    84         }
    85     }
    86     return 0;
    87 }
    View Code

    uva 11992 Fast Matrix Operations

    矩阵不超过20行,开20棵线段树就可以了。

      1 #include<bits/stdc++.h>
      2 
      3 using namespace std;
      4 
      5 #define LL long long
      6 #define eps 1e-8
      7 #define MP make_pair
      8 #define N 100010
      9 #define M 200020
     10 #pragma comment(linker, "/STACK:1024000000,1024000000")
     11 #define Pi acos(-1.0)
     12 #define mod 1000000007
     13 #define inf 0x3f3f3f3f
     14 #define ls (i << 1)
     15 #define rs (ls | 1)
     16 #define md ((ll + rr) >> 1)
     17 #define lson ll, md, ls
     18 #define rson md + 1, rr, rs
     19 
     20 int sum[22][N<<2], mi[22][N<<2], mx[22][N<<2], add[22][N<<2], val[22][N<<2];
     21 
     22 void push_down(int x, int i, int ll, int rr){
     23     if(val[x][i]){
     24         int v = val[x][i];
     25         val[x][ls] = val[x][rs] = v;
     26         sum[x][ls] = (md - ll + 1) * v, sum[x][rs] = (rr - md) * v;
     27         mi[x][ls] = mi[x][rs] = v;
     28         mx[x][ls] = mx[x][rs] = v;
     29         add[x][ls] = add[x][rs] = 0;
     30         val[x][i] = 0;
     31     }
     32     if(add[x][i]){
     33         int v = add[x][i];
     34         add[x][ls] += v, add[x][rs] += v;
     35         sum[x][ls] += (md - ll + 1) * v, sum[x][rs] += (rr - md) * v;
     36         mi[x][ls] += v,  mi[x][rs] += v;
     37         mx[x][ls] += v,  mx[x][rs] += v;
     38         add[x][i] = 0;
     39     }
     40 }
     41 void push_up(int x, int i, int ll, int rr){
     42     sum[x][i] = sum[x][ls] + sum[x][rs];
     43     mx[x][i] = max(mx[x][ls], mx[x][rs]);
     44     mi[x][i] = min(mi[x][ls], mi[x][rs]);
     45 }
     46 void add_x(int x, int l, int r, int v, int ll, int rr, int i){
     47     if(l == ll && r == rr){
     48         sum[x][i] += (r - l + 1) * v;
     49         add[x][i] += v;
     50         mi[x][i] += v, mx[x][i] += v;
     51         return ;
     52     }
     53     push_down(x, i, ll, rr);
     54     if(r <= md) add_x(x, l, r, v, lson);
     55     else if(l > md) add_x(x, l, r, v, rson);
     56     else
     57         add_x(x, l, md, v, lson), add_x(x, md + 1, r, v, rson);
     58     push_up(x, i, ll, rr);
     59 }
     60 void update(int x, int l, int r, int v, int ll, int rr, int i){
     61     if(l == ll && r == rr){
     62         sum[x][i] = (r - l + 1) * v;
     63         val[x][i] = v;
     64         mi[x][i] = mx[x][i] = v;
     65         add[x][i] = 0;
     66         return ;
     67     }
     68     push_down(x, i, ll, rr);
     69     if(r <= md) update(x, l, r, v, lson);
     70     else if(l > md) update(x, l, r, v, rson);
     71     else
     72         update(x, l, md, v, lson), update(x, md + 1, r, v, rson);
     73    push_up(x, i, ll, rr);
     74 }
     75 
     76 int ans_sum, ans_mi, ans_mx;
     77 void query(int x, int l, int r, int ll, int rr, int i){
     78     if(l == ll && r == rr){
     79         ans_sum += sum[x][i], ans_mi = min(ans_mi, mi[x][i]), ans_mx = max(ans_mx, mx[x][i]);
     80         return ;
     81     }
     82     push_down(x, i, ll, rr);
     83     if(r <= md) query(x, l, r, lson);
     84     else if(l > md) query(x, l, r, rson);
     85     else
     86         query(x, l, md, lson), query(x, md + 1, r, rson);
     87     push_up(x, i, ll, rr);
     88 }
     89 int main(){
     90     int n, m, q;
     91     while(scanf("%d%d%d", &n, &m, &q) != EOF){
     92         memset(sum, 0, sizeof sum);
     93         memset(mi, 0, sizeof mi);
     94         memset(mx, 0, sizeof mx);
     95         memset(add, 0, sizeof add);
     96         int x, xx, y, yy, op, v;
     97         while(q--){
     98             scanf("%d%d%d%d%d", &op, &x, &y, &xx, &yy);
     99             if(op == 3){
    100                 ans_sum = 0, ans_mi = inf, ans_mx = 0;
    101                 for(int i = x; i <= xx; ++i)
    102                     query(i, y, yy, 1, m, 1);
    103                 printf("%d %d %d
    ", ans_sum, ans_mi, ans_mx);
    104                 continue;
    105             }
    106             scanf("%d", &v);
    107             if(op == 1){
    108                 for(int i = x; i <= xx; ++i)
    109                     add_x(i, y, yy, v, 1, m, 1);
    110             }
    111             if(op == 2){
    112                 for(int i = x; i <= xx; ++i)
    113                     update(i, y, yy, v, 1, m, 1);
    114             }
    115 
    116         }
    117     }
    118     return 0;
    119 }
    View Code

    hdu 3308 LCIS

    求一段区间内的最大的 LCIS

    做法:就是维护左端点,右端点,左右连续最大LCIS以及区间内最大LCIS,

     1 #include<bits/stdc++.h>
     2 
     3 using namespace std;
     4 
     5 #define LL long long
     6 #define eps 1e-8
     7 #define MP make_pair
     8 #define N 100010
     9 #define M 200020
    10 #pragma comment(linker, "/STACK:1024000000,1024000000")
    11 #define Pi acos(-1.0)
    12 #define mod 1000000007
    13 #define inf 0x3f3f3f3f
    14 #define ls (i << 1)
    15 #define rs (ls | 1)
    16 #define md ((ll + rr) >> 1)
    17 #define lson ll, md, ls
    18 #define rson md + 1, rr, rs
    19 
    20 int mxL[N<<2], mxR[N<<2], sumL[N<<2], sumR[N<<2], sum[N<<2];
    21 void f(int i, int v){
    22     mxL[i] = mxR[i] = v;
    23     sumL[i] = sumR[i] = sum[i] = 1;
    24 }
    25 void push_up(int i, int ll, int rr){
    26     mxL[i] = mxL[ls], mxR[i] = mxR[rs];
    27     sumL[i] = sumL[ls], sumR[i] = sumR[rs];
    28     sum[i] = max(sum[ls], sum[rs]);
    29     if(mxR[ls] < mxL[rs]){
    30         sum[i] = max(sum[i], sumR[ls] + sumL[rs]);
    31         if(sumL[ls] == md - ll + 1)
    32             sumL[i] += sumL[rs];
    33         if(sumR[rs] == rr - md)
    34             sumR[i] += sumR[ls];
    35     }
    36 }
    37 void build(int ll, int rr, int i){
    38     if(ll == rr){
    39         int v; scanf("%d", &v);
    40         f(i, v);
    41         return ;
    42     }
    43     build(lson), build(rson);
    44     push_up(i, ll, rr);
    45 }
    46 void update(int p, int v, int ll, int rr, int i){
    47     if(ll == rr){
    48         f(i, v); return ;
    49     }
    50     if(p <= md) update(p, v, lson);
    51     else update(p, v, rson);
    52     push_up(i, ll, rr);
    53 }
    54 int query(int l, int r, int ll, int rr, int i){
    55     if(l == ll && r == rr){
    56         return sum[i];
    57     }
    58     if(r <= md) return query(l, r, lson);
    59     if(l > md) return query(l, r, rson);
    60     int ret1 = query(l, md, lson), ret2 = query(md + 1, r, rson), ret = 0;
    61     if(mxR[ls] < mxL[rs])
    62         ret = min(sumR[ls], md - l + 1) + min(sumL[rs], r - md);
    63     return max(ret, max(ret1, ret2));
    64 }
    65 int main(){
    66     //freopen("tt.txt", "r", stdin);
    67     int cas, n, m;
    68     scanf("%d", &cas);
    69     while(cas--){
    70         scanf("%d%d", &n, &m);
    71         build(1, n, 1);
    72         char ch[5]; int l, r;
    73         while(m--){
    74             scanf("%s%d%d", ch, &l, &r);
    75             if(ch[0] == 'U'){
    76                 l++;
    77                 update(l, r, 1, n, 1);
    78             }
    79             else {
    80                 l++, r++;
    81                 printf("%d
    ", query(l, r, 1, n, 1));
    82             }
    83         }
    84     }
    85     return 0;
    86 }
    View Code

    poj 2777 Count Color

    询问一段区间内有多少种不同的颜色。

    做法:不超过30种颜色,那么用二进制表示该区间是否存在该种颜色

     1 #include<iostream>
     2 #include<cstring>
     3 #include<cmath>
     4 #include<cstdio>
     5 #include<algorithm>
     6 
     7 using namespace std;
     8 
     9 #define LL long long
    10 #define eps 1e-8
    11 #define MP make_pair
    12 #define N 100010
    13 #define M 200020
    14 #pragma comment(linker, "/STACK:1024000000,1024000000")
    15 #define Pi acos(-1.0)
    16 #define mod 1000000007
    17 #define inf 0x3f3f3f3f
    18 #define ls (i << 1)
    19 #define rs (ls | 1)
    20 #define md ((ll + rr) >> 1)
    21 #define lson ll, md, ls
    22 #define rson md + 1, rr, rs
    23 
    24 LL sum[N<<2], down[N<<2];
    25 void push_down(int i){
    26     if(down[i]){
    27         down[ls] = down[i], down[rs] = down[i];
    28         sum[ls] = down[i], sum[rs] = down[i];
    29         down[i] = 0;
    30     }
    31 }
    32 void push_up(int i){
    33     sum[i] = (sum[ls] | sum[rs]);
    34 }
    35 void build(int ll, int rr, int i){
    36     sum[i] = 1, down[i] = 0;
    37     if(ll == rr) return ;
    38     build(lson), build(rson);
    39 }
    40 void update(int l, int r, LL v, int ll, int rr, int i){
    41     if(l == ll && r == rr){
    42         sum[i] = v;
    43         down[i] = v;
    44         return ;
    45     }
    46     push_down(i);
    47     if(r <= md) update(l, r, v, lson);
    48     else if(l > md) update(l, r, v, rson);
    49     else
    50         update(l, md, v, lson), update(md + 1, r, v, rson);
    51     push_up(i);
    52 }
    53 LL query(int l, int r, int ll, int rr, int i){
    54     if(l == ll && r == rr)
    55         return sum[i];
    56     push_down(i);
    57     if(r <= md) return query(l, r, lson);
    58     if(l > md) return query(l, r, rson);
    59     int ret1 = query(l, md, lson), ret2 = query(md + 1, r, rson);
    60     push_up(i);
    61     return (ret1 | ret2);
    62 }
    63 int main(){
    64     int n, c, m;
    65     while(scanf("%d%d%d", &n, &c, &m) != EOF){
    66         build(1, n, 1);
    67         char ch[5];
    68         int l, r, c;
    69         while(m--){
    70             scanf("%s%d%d", ch, &l, &r);
    71             if(l > r) swap(l, r);
    72             if(ch[0] == 'C'){
    73                 scanf("%d", &c);
    74                 c--;
    75                 update(l, r, (1LL<<c), 1, n, 1);
    76             }
    77             else{
    78                 LL tot = query(l, r, 1, n, 1);
    79                 int ans = 0;
    80                 while(tot){
    81                     if(tot & 1) ans++;
    82                     tot >>= 1;
    83                 }
    84                 printf("%d
    ", ans);
    85             }
    86         }
    87     }
    88     return 0;
    89 }
    View Code

    hdu 5381 The sum of gcd

    You have an array A,the length of A is n
    Let f(l,r)=∑(r, i=l)∑ (r,j=i)gcd(ai,ai+1....aj)

    做法:离线处理。。按照r排序,i从1到n,由于每个数ai的gcd最多有log(ai)个。用线段树区间更新,然后区间查询(l, r),复杂度nlognlogn。。

      1 #include <iostream>
      2 #include <cstdio>
      3 #include <cstring>
      4 #include <algorithm>
      5 #include <cmath>
      6 #include <queue>
      7 using namespace std;
      8 
      9 #define LL long long
     10 #define eps 1e-8
     11 #define inf 0x3f3f3f3f
     12 #define MP make_pair
     13 #define N 10020
     14 #define M 200020
     15 #pragma comment(linker, "/STACK:1024000000,1024000000")
     16 #define Pi acos(-1.0)
     17 #define mod 258280327
     18 #define ls (i << 1)
     19 #define rs (ls | 1)
     20 #define md ((ll + rr) >> 1)
     21 #define lson ll, md, ls
     22 #define rson md + 1, rr, rs
     23 
     24 struct node{
     25     int l, r, id;
     26     bool operator < (const node &b) const{
     27         return r < b.r;
     28     }
     29 }p[N];
     30 
     31 LL sum[N<<2], down[N<<2];
     32 
     33 void push_down(int i, int ll, int rr){
     34     if(down[i]){
     35         sum[ls] += 1LL * (md - ll + 1) * down[i];
     36         sum[rs] += 1LL * (rr - md) * down[i];
     37         down[ls] += down[i], down[rs] += down[i];
     38         down[i] = 0;
     39     }
     40 }
     41 void push_up(int i){
     42     sum[i] = sum[ls] + sum[rs];
     43 }
     44 void update(int l, int r, int v, int ll, int rr, int i){
     45     if(l == ll && r == rr){
     46         sum[i] += 1LL * (r - l + 1) * v;
     47         down[i] += v;
     48         return ;
     49     }
     50     push_down(i, ll, rr);
     51     if(r <= md) update(l, r, v, lson);
     52     else if(l > md) update(l, r, v, rson);
     53     else
     54         update(l, md, v, lson), update(md + 1, r, v, rson);
     55     push_up(i);
     56 }
     57 LL query(int l, int r, int ll, int rr, int i){
     58     if(l == ll && r == rr)
     59         return sum[i];
     60     LL ret = 0;
     61     push_down(i, ll, rr);
     62     if(r <= md) ret = query(l, r, lson);
     63     else if(l > md) ret = query(l, r, rson);
     64     else ret = query(l, md, lson) + query(md + 1, r, rson);
     65     push_up(i);
     66     return ret;
     67 }
     68 int gcd(int x, int y){
     69     return y == 0 ? x : gcd(y, x % y);
     70 }
     71 
     72 int a[N], val[N], nxt[N];
     73 LL ans[N];
     74 void debug(int i){
     75     printf("%lld
    ", sum[i]);
     76 }
     77 int main(){
     78     //freopen("tt.txt", "r", stdin);
     79     int cas;
     80     scanf("%d", &cas);
     81     while(cas--){
     82         int n, m;
     83         scanf("%d", &n);
     84         for(int i = 1; i <= n; ++i)
     85             scanf("%d", &a[i]);
     86         scanf("%d", &m);
     87         for(int i = 0; i < m; ++i){
     88             scanf("%d%d", &p[i].l, &p[i].r);
     89             p[i].id = i;
     90         }
     91         sort(p, p + m);
     92         memset(sum, 0, sizeof sum);
     93         memset(down, 0, sizeof down);
     94         update(1, 1, a[1], 1, n, 1);
     95         val[1] = a[1], nxt[1] = 1;
     96         int k = 0;
     97         for(int i = 2; i <= n; ++i){
     98             int j = i;
     99             val[i] = a[i], nxt[i] = i;
    100             while(j > 0){
    101                 val[j] = gcd(val[j], a[i]);
    102                 while(nxt[j] > 1 && gcd(val[j], val[nxt[j]-1]) == val[j])
    103                     nxt[j] = nxt[nxt[j]-1];
    104                 update(nxt[j], j, val[j], 1, n, 1);
    105                 j = nxt[j] - 1;
    106             }
    107             while(k < m && p[k].r == i){
    108                 ans[p[k].id] = query(p[k].l, p[k].r, 1, n, 1);
    109                 ++k;
    110             }
    111         }
    112         for(int i = 0; i < m; ++i)
    113             printf("%lld
    ", ans[i]);
    114     }
    115     return 0;
    116 }
    View Code

     hdu 5390 tree

    trie树+线段树。处理dfs序,离线操作,在线段树每个节点做这些操作。直接在线做会爆空间。

    b[N*20]要开20倍,不能开10倍,因为线段树logn层 > 10

      1 #include <iostream>
      2 #include <cstdio>
      3 #include <cstring>
      4 #include <algorithm>
      5 #include <cmath>
      6 #include <queue>
      7 using namespace std;
      8 
      9 #define LL long long
     10 #define eps 1e-6
     11 #define inf 0x3f3f3f3f
     12 #define MP make_pair
     13 #define N 100020
     14 #define M 1000020
     15 #pragma comment(linker, "/STACK:1024000000,1024000000")
     16 #define Pi acos(-1.0)
     17 #define mod 258280327
     18 #define ls (i << 1)
     19 #define rs (ls | 1)
     20 #define md ((ll + rr) >> 1)
     21 #define lson ll, md, ls
     22 #define rson md + 1, rr, rs
     23 
     24 
     25 int readint() {
     26     char c;
     27     while((c = getchar()) && !(c >= '0' && c <= '9') && c != '-');
     28 
     29     int ret = c - '0', sgn = 0;
     30     if(c == '-') ret = 0, sgn = 1;
     31     while((c = getchar()) && c >= '0' && c <= '9')
     32         ret = ret * 10 + c - '0';
     33     if(sgn) ret = -ret;
     34     return ret;
     35 }
     36 
     37 
     38 int fst[N], nxt[N], vv[N], e, n, m;
     39 void init(){
     40     for(int i = 1; i <= n; ++i) fst[i] = -1;
     41     e = 0;
     42 }
     43 void add(int u, int v){
     44     vv[e] = v, nxt[e] = fst[u], fst[u] = e++;
     45 }
     46 
     47 int dc, in[N], out[N];
     48 void dfs(int u){
     49     in[u] = ++dc;
     50     for(int i = fst[u]; ~i; i = nxt[i]){
     51         int v = vv[i];
     52         dfs(v);
     53     }
     54     out[u] = dc;
     55 }
     56 
     57 struct node{
     58     int L, R, op, val;
     59     node(){}
     60     node(int _op, int _L, int _R, int _val){
     61         op = _op, L = _L, R = _R, val = _val;
     62     }
     63 }b[N*20];
     64 
     65 struct Trie{
     66     int ch[N*33][2], cnt[N*33], tot;
     67     void init(){
     68         ch[0][0] = ch[0][1] = -1;
     69         tot = 0;
     70         cnt[0] = 0;
     71     }
     72     void insert(int x, int v){
     73         int a[33];
     74         for(int i = 0; i < 32; ++i)
     75             a[i] = (x >> i) & 1;
     76         int t = 0;
     77         for(int i = 31; i >= 0; --i){
     78             int c = a[i];
     79             if(ch[t][c] == -1){
     80                 ch[t][c] = ++tot;
     81                 ch[tot][0] = ch[tot][1] = -1;
     82                 cnt[tot] = 0;
     83             }
     84             t = ch[t][c];
     85             cnt[t] += v;
     86         }
     87     }
     88     int query(int x){
     89         if(tot == 0) return 0;
     90         int a[33];
     91         for(int i = 0; i < 32; ++i)
     92             a[i] = (x >> i) & 1;
     93         int t = 0, ret = 0;
     94         for(int i = 31; i >= 0; --i){
     95             int c = a[i];
     96             if(ch[t][c^1] == -1 || cnt[ch[t][c^1]] == 0){
     97                 if(ch[t][c] == -1 || cnt[ch[t][c]] == 0) return 0;
     98                 t = ch[t][c];
     99             }
    100             else t = ch[t][c^1], ret += 1 << i;
    101         }
    102         return ret;
    103     }
    104 }trie;
    105 
    106 int val[N], ans[N], cnt;
    107 
    108 void solve(int l, int r, int ll, int rr){
    109     if(l > r) return ;
    110     if(ll == rr){
    111         trie.init();
    112         for(int i = l; i <= r; ++i){
    113             if(b[i].op == 0)
    114                 trie.insert(b[i].val, 1);
    115             else if(b[i].op == 2)
    116                 trie.insert(b[i].val, -1);
    117             else
    118                 ans[b[i].R] = max(ans[b[i].R], trie.query(b[i].val));
    119         }
    120         return ;
    121     }
    122     trie.init();
    123     for(int i = l; i <= r; ++i){
    124         if(b[i].op == 0){
    125             if(b[i].L == ll && b[i].R == rr)
    126                 trie.insert(b[i].val, 1);
    127         }
    128         else if(b[i].op == 2){
    129             if(b[i].L == ll && b[i].R == rr)
    130                 trie.insert(b[i].val, -1);
    131         }
    132         else
    133             ans[b[i].R] = max(ans[b[i].R], trie.query(b[i].val));
    134     }
    135     int t = cnt;
    136     for(int i = l; i <= r; ++i){
    137         if(b[i].op == 0 || b[i].op == 2){
    138             if(b[i].L == ll && b[i].R == rr) continue;
    139             if(b[i].L > md) continue;
    140             b[++cnt] = b[i];
    141             if(b[i].R > md) b[cnt].R = md;
    142         }
    143         else{
    144             if(b[i].L <= md) b[++cnt] = b[i];
    145         }
    146     }
    147     solve(t + 1, cnt, ll, md);
    148     cnt = t;
    149     for(int i = l; i <= r; ++i){
    150         if(b[i].op == 0 || b[i].op == 2){
    151             if(b[i].L == ll && b[i].R == rr) continue;
    152             if(b[i].R <= md) continue;
    153             b[++cnt] = b[i];
    154             if(b[i].L <= md) b[cnt].L = md + 1;
    155         }
    156         else{
    157             if(b[i].L > md) b[++cnt] = b[i];
    158         }
    159     }
    160     solve(t + 1, cnt, md + 1, rr);
    161     cnt = t;
    162 }
    163 void debug(){
    164     for(int i = 1; i <= cnt; ++i){
    165         printf("%d %d %d %d
    ", b[i].op, b[i].L, b[i].R, b[i].val);
    166     }
    167 }
    168 int main(){
    169    // freopen("1011.in", "r", stdin);
    170     int cas;
    171     cas = readint();
    172     while(cas--){
    173         n = readint(), m = readint();
    174         init();
    175         for(int i = 2; i <= n; ++i){
    176             int u;
    177             u = readint();
    178             add(u, i);
    179         }
    180         dc = cnt = 0;
    181         dfs(1);
    182         for(int i = 1; i <= n; ++i){
    183             val[i] = readint();
    184             b[++cnt] = node(0, in[i], out[i], val[i]);
    185         }
    186         int tot = 0;
    187         while(m--){
    188             int op, u, v;
    189             op = readint();
    190             if(op == 0){
    191                 u = readint(), v = readint();
    192                 b[++cnt] = node(2, in[u], out[u], val[u]);
    193                 val[u] = v;
    194                 b[++cnt] = node(0, in[u], out[u], v);
    195             }
    196             else{
    197                 u = readint();
    198                 b[++cnt] = node(1, in[u], ++tot, val[u]);
    199             }
    200         }
    201         for(int i = 1; i <= tot; ++i) ans[i] = 0;
    202         solve(1, cnt, 1, n);
    203         for(int i = 1; i <= tot; ++i)
    204             printf("%d
    ", ans[i]);
    205     }
    206     return 0;
    207 }
    View Code

     poj 3667 Hotel

    区间合并。。好像很难,细心。

      1 #include <iostream>
      2 #include <cstdio>
      3 #include <cstring>
      4 #include <algorithm>
      5 #include <cmath>
      6 #include <queue>
      7 #include <stack>
      8 
      9 using namespace std;
     10 
     11 #define LL long long
     12 #define eps 1e-6
     13 #define inf 0x3f3f3f3f
     14 #define MP make_pair
     15 #define N 100020
     16 #define M 1000020
     17 #pragma comment(linker, "/STACK:1024000000,1024000000")
     18 #define Pi acos(-1.0)
     19 #define mod 258280327
     20 #define ls (i << 1)
     21 #define rs (ls | 1)
     22 #define md ((ll + rr) >> 1)
     23 #define lson ll, md, ls
     24 #define rson md + 1, rr, rs
     25 
     26 int sumL[N<<2], sumR[N<<2], sum[N<<2], down[N<<2];
     27 void build(int ll, int rr, int i){
     28     down[i] = -1;
     29     sumL[i] = sumR[i] = sum[i] = rr - ll + 1;
     30     if(ll == rr) return ;
     31     build(lson), build(rson);
     32 }
     33 
     34 void f(int i, int u, int v){
     35     sumL[i] = sumR[i] = sum[i] = v;
     36     down[i] = u;
     37 }
     38 void push_down(int i, int ll, int rr){
     39     if(down[i] == 1){
     40         f(ls, 1, md - ll + 1);
     41         f(rs, 1, rr - md);
     42         down[i] = -1;
     43     }
     44     if(down[i] == 0){
     45         f(ls, 0, 0);
     46         f(rs, 0, 0);
     47         down[i] = -1;
     48     }
     49 }
     50 void push_up(int i, int ll, int rr){
     51     sumL[i] = sumL[ls], sumR[i] = sumR[rs];
     52     sum[i] = max(sum[ls], sum[rs]);
     53     sum[i] = max(sum[i], sumR[ls] + sumL[rs]);
     54     if(sumL[ls] == md - ll + 1)
     55         sumL[i] += sumL[rs];
     56     if(sumR[rs] == rr - md)
     57         sumR[i] += sumR[ls];
     58 }
     59 void update(int l, int r, int v, int ll, int rr, int i){
     60     if(l == ll && r == rr){
     61         if(v == 1)
     62             f(i, 1, rr - ll + 1);
     63         else
     64             f(i, 0, 0);
     65         return ;
     66     }
     67     push_down(i, ll, rr);
     68     if(r <= md) update(l, r, v, lson);
     69     else if(l > md) update(l, r, v, rson);
     70     else update(l, md, v, lson), update(md + 1, r, v, rson);
     71     push_up(i, ll, rr);
     72 }
     73 int query(int p, int ll, int rr, int i){
     74     if(ll == rr){
     75         return sum[i];
     76     }
     77     push_down(i, ll, rr);
     78     int ret;
     79     if(sum[ls] >= p)
     80         ret = query(p, lson);
     81     else if(sumR[ls] + sumL[rs] >= p)
     82         ret = md - sumR[ls] + 1;
     83     else
     84         ret = query(p, rson);
     85     push_up(i, ll, rr);
     86     return ret;
     87 }
     88 int main(){
     89     //freopen("tt.txt", "r", stdin);
     90     int n, m;
     91     while(scanf("%d%d", &n, &m) != EOF){
     92         build(1, n, 1);
     93         int op, L, R;
     94         while(m--){
     95             scanf("%d%d", &op, &L);
     96             if(op == 1){
     97                 if(sum[1] < L){
     98                     puts("0"); continue;
     99                 }
    100                 int x = query(L, 1, n, 1);
    101                 printf("%d
    ", x);
    102                 update(x, x + L - 1, 0, 1, n, 1);
    103                // printf("%d
    ", sum[1]);
    104             }
    105             else{
    106                 scanf("%d", &R);
    107                 update(L, L + R - 1, 1, 1, n, 1);
    108             }
    109         }
    110     }
    111     return 0;
    112 }
    View Code

     uva 12436 Rip Van Winkle's Code

    从昨晚wa到早上。。题目的意思就不说了。。

    开6个数组。t1,t2表示第一种和第二种操作区间内,最左边的数加的值。c1,c2表示第一种和第二种操作加的次数(等差数列,公差就是次数)。最坑爹的是cover的操作,在push_down里是if(cov[i]){}然后才push_down的,如果把区间内的数变为0就跪了。。所以开多一个数组。。

      1 #include <iostream>
      2 #include <cstdio>
      3 #include <cstring>
      4 #include <algorithm>
      5 #include <cmath>
      6 #include <queue>
      7 #include <stack>
      8 
      9 using namespace std;
     10 
     11 #define LL long long
     12 #define eps 1e-6
     13 #define inf 0x3f3f3f3f
     14 #define MP make_pair
     15 #define N 250020
     16 #define M 1000020
     17 #pragma comment(linker, "/STACK:1024000000,1024000000")
     18 #define Pi acos(-1.0)
     19 #define ls (i << 1)
     20 #define rs (ls | 1)
     21 #define md ((ll + rr) >> 1)
     22 #define lson ll, md, ls
     23 #define rson md + 1, rr, rs
     24 
     25 LL sum[N<<2], cov[N<<2], t1[N<<2], t2[N<<2], c1[N<<2], c2[N<<2], down[N<<2];
     26 void build(int ll, int rr, int i){
     27     sum[i] = cov[i] = t1[i] = t2[i] = c1[i] = c2[i] = down[i] = 0;
     28     if(ll == rr) return ;
     29     build(lson), build(rson);
     30 }
     31 void push_down(int i, int ll, int rr){
     32     if(down[i]){
     33         down[ls] = down[rs] = 1;
     34         cov[ls] = cov[rs] = cov[i];
     35         sum[ls] = cov[i] * (md - ll + 1);
     36         sum[rs] = cov[i] * (rr - md);
     37         t1[ls] = t1[rs] = t2[ls] = t2[rs] = 0;
     38         c1[ls] = c1[rs] = c2[ls] = c2[rs] = 0;
     39         cov[i] = 0;
     40         down[i] = 0;
     41     }
     42     if(t1[i]){
     43         c1[ls] += c1[i], c1[rs] += c1[i];
     44         t1[ls] += t1[i], t1[rs] += (md - ll + 1) * c1[i] + t1[i];
     45         sum[ls] += (t1[i] + t1[i] + (md - ll) * c1[i]) * (md -ll + 1) / 2;
     46         sum[rs] += ((md - ll + 1) * c1[i] + t1[i] + t1[i] + (rr - ll) * c1[i]) * (rr - md) / 2;
     47         t1[i] = c1[i] = 0;
     48     }
     49     if(t2[i]){
     50         c2[ls] += c2[i], c2[rs] += c2[i];
     51         t2[ls] += t2[i], t2[rs] += t2[i] - (md - ll + 1) * c2[i] ;
     52         sum[ls] += (t2[i] + t2[i] - (md - ll) * c2[i]) * (md - ll + 1) / 2;
     53         sum[rs] += (t2[i] - (md - ll + 1) * c2[i] + t2[i] - (rr - ll) * c2[i]) * (rr - md) / 2;
     54         t2[i] = c2[i] = 0;
     55     }
     56 }
     57 void push_up(int i){
     58     sum[i] = sum[ls] + sum[rs];
     59 }
     60 void update(int l, int r, LL v, int op, int ll, int rr, int i){
     61     if(l == ll && r == rr){
     62         if(op == 1){
     63             sum[i] += 1LL * (v + rr - ll + v) * (rr - ll + 1) / 2;
     64             t1[i] += v;
     65             c1[i]++;
     66         }
     67         else if(op == 2){
     68             sum[i] += 1LL * (v - rr + ll + v) * (rr - ll + 1) / 2;
     69             t2[i] += v;
     70             c2[i]++;
     71         }
     72         else if(op == 3){
     73             sum[i] = 1LL * v * (rr - ll + 1);
     74             cov[i] = v;
     75             down[i] = 1;
     76             t1[i] = t2[i] = c1[i] = c2[i] = 0;
     77         }
     78         return ;
     79     }
     80     push_down(i, ll, rr);
     81     if(r <= md) update(l, r, v, op, lson);
     82     else if(l > md) update(l, r, v, op, rson);
     83     else{
     84         if(op == 1){
     85             update(l, md, v, op, lson);
     86             int val = v + (md - l + 1);
     87             update(md + 1, r, val, op, rson);
     88         }
     89         else if(op == 2){
     90             update(l, md, v, op, lson);
     91             int val = v - (md - l + 1);
     92             update(md + 1, r, val, op, rson);
     93         }
     94         else update(l, md, v, op, lson), update(md + 1, r, v, op, rson);
     95     }
     96     push_up(i);
     97 }
     98 LL query(int l, int r, int ll, int rr, int i){
     99     if(l == ll && r == rr)
    100         return sum[i];
    101     push_down(i, ll, rr);
    102     LL ret = 0;
    103     if(r <= md) ret = query(l, r, lson);
    104     else if(l > md) ret = query(l, r, rson);
    105     else ret = query(l, md, lson) + query(md + 1, r, rson);
    106     push_up(i);
    107     return ret;
    108 }
    109 int main(){
    110     int m, n = 250000;
    111     while(scanf("%d", &m) != EOF){
    112         build(1, n, 1);
    113         char s[5];
    114         int L, R, c;
    115         while(m--){
    116             scanf("%s", s);
    117             scanf("%d%d", &L, &R);
    118             if(s[0] == 'A'){
    119                 update(L, R, 1, 1, 1, n, 1);
    120             }
    121             else if(s[0] == 'B')
    122                 update(L, R, R - L + 1, 2, 1, n, 1);
    123             else if(s[0] == 'C'){
    124                 scanf("%d", &c);
    125                 update(L, R, c, 3, 1, n, 1);
    126             }
    127             else printf("%lld
    ", query(L, R, 1, n, 1));
    128         }
    129     }
    130     return 0;
    131 }
    View Code
  • 相关阅读:
    Nginx学习总结(一)
    zabbix3.4.8配置自动发现主机并监控
    Windows server 2012/2016系统安装zabbix3.2客户端
    CentOS7.6系统安装zabbix3.4.8客户端
    一个小爬虫的整体解决方案
    如何通过一个立方体搭建一栋楼
    用Scrapy框架开发的一个爬虫项目
    寻找替代imagemin更好的插件
    原生和es6复杂数组去重的方法
    javascript关于对象或者数组深克隆的写法
  • 原文地址:https://www.cnblogs.com/LJ-blog/p/4732305.html
Copyright © 2011-2022 走看看