采样定理(又称取样定理、抽样定理)是采样带限信号过程所遵循的规律,1928年由美国电信工程师H.奈奎斯特首先提出来的,因此称为奈奎斯特采样定理。1948年信息论的创始人C.E.香农对这一定理加以明确说明并正式作为定理引用,因此在许多文献中又称为香农采样定理。该理论支配着几乎所有的信号/图像等的获取、处理、存储、传输等,即:采样率不小于最高频率的两倍(该采样率称作Nyquist采样率)。该理论指导下的信息获取、存储、融合、处理及传输等成为目前信息领域进一步发展的主要瓶颈之一,主要表现在两个方面:
(1)数据获取和处理方面。对于单个(幅)信号/图像,在许多实际应用中(例如,超宽带通信,超宽带信号处理,THz成像,核磁共振,空间探测,等等), Nyquist采样硬件成本昂贵、获取效率低下,在某些情况甚至无法实现。为突破Nyquist采样定理的限制,已发展了一些理论,其中典型的例子为Landau理论, Papoulis等的非均匀采样理论,M. Vetterli等的 finite rate of innovation信号采样理论,等。对于多道(或多模式)数据(例如,传感器网络,波束合成,无线通信,空间探测,等),硬件成本昂贵、信息冗余及有效信息提取的效率低下,等等。
(2)数据存储和传输方面。通常的做法是先按照Nyquist方式获取数据,然后将获得的数据进行压缩,最后将压缩后的数据进行存储或传输,显然,这样的方式造成很大程度的资源浪费。另外,为保证信息的安全传输,通常的加密技术是用某种方式对信号进行编码,这给信息的安全传输和接受带来一定程度的麻烦。
综上所述:Nyquist-Shannon理论并不是唯一、最优的采样理论,研究如何突破以Nyquist-Shannon采样理论为支撑的信息获取、处理、融合、存储及传输等的方式是推动信息领域进一步往前发展的关键。众所周知:(1)Nyquist采样率是信号精确复原的充分条件,但绝不是必要条件。(2)除带宽可作为先验信息外,实际应用中的大多数信号/图像中拥有大量的structure。由贝叶斯理论可知:利用该structure信息可大大降低数据采集量。(3) Johnson-Lindenstrauss理论表明:以overwhelming性概率,K+1次测量足以精确复原N维空间的K-稀疏信号。
近年来,由D. Donoho(美国科学院院士)、E. Candes(Ridgelet, Curvelet创始人)及华裔科学家T. Tao(2006年菲尔兹奖获得者,2008年被评为世界上最聪明的科学家)等人提出了一种新的信息获取指导理论,即,压缩感知或压缩传感(Compressive Sensing(CS) or Compressed Sensing、Compressed Sampling)。该理论指出:对可压缩的信号可通过远低于Nyquist标准的方式进行采样数据,仍能够精确地恢复出原始信号。该理论一经提出,就在信息论、信号/图像处理、医疗成像、模式识别、地质勘探、光学/雷达成像、无线通信等领域受到高度关注,并被美国科技评论评为2007年度十大科技进展。目前CS理论的研究尚属于起步阶段,但已表现出了强大的生命力,并已发展了分布CS理论(Baron等提出),1-BIT CS理论(Baraniuk等提出),Bayesian CS理论(Carin等提出),无限维CS理论(Elad等提出),变形CS理论(Meyer等提出),等等,已成为数学领域和工程应用领域的一大研究热点。