zoukankan      html  css  js  c++  java
  • 神经网络中的降维和升维方法 (tensorflow & pytorch)

      大名鼎鼎的UNet和我们经常看到的编解码器模型,他们的模型都是先将数据下采样,也称为特征提取,然后再将下采样后的特征恢复回原来的维度。这个特征提取的过程我们称为“下采样”,这个恢复的过程我们称为“上采样”,本文就专注于神经网络中的下采样和上采样来进行一次总结。写的不好勿怪哈。

    神经网络中的降维方法

    池化层

      池化层(平均池化层、最大池化层),卷积

     平均池化层

    最大池化层

    还有另外一些pool层:nn.LPPoolnn.AdaptiveMaxPoolnn.AdaptiveAvgPoolnn.FractionalMaxPool2d

    卷积

    普通卷积

    还有一些独特的卷积,感兴趣的可以自己去了解

    升维方法

    插值方法

    插值方法有很多种有:阶梯插值、线性插值、三次样条插值等等

    numpy的实现方法我在另外一篇文章中已经介绍过了,为了避免重复,想要了解的同学请移步【插值方法及python实现

    pytorch实现方法

    torch.nn.Upsample(size=None, scale_factor=None, mode='nearest', align_corners=None)

    对给定多通道的1维(时间)、2维(空间)、3维(体积)数据进行上采样。

    • 1维(向量数据),输入数据Tensor格式为3维:(batch_size, channels, width)
    • 2维(图像数据),输入数据Tensor格式为4维:(batch_size, channels, height, width)
    • 3维(点云数据),输入数据Tensor格式为5维:(batch_size, channels, depth,  height, width)

    参数

    • size:输入数据(一维 or 二维 or 三维)
    • scale_factor:缩放大小
    • mode:上采样算法(nearest(最近邻插值)、linear(线性插值)、bilinear(双线性插值)、bicubic(双三次插值)、trilinear(三次线性插值)
    • align_corners:如果为True,则输入和输出张量的角像素对齐,从而保留这些像素处的值。 仅在模式为“线性”,“双线性”或“三线性”时有效。 默认值:False

     返回

    • Input:$(N, C, W_{in}), (N, C, H_{in}, W_{in}) 或(N, C, D_{in}, H_{in}, W_{in})$

    • Output: $(N, C, W_{out}), (N, C, H_{out}, W_{out}) 或(N, C, D_{out}, H_{out}, W_{out})$

    $D_{out}​=[D_{in}​× ext{scale_factor}]$

    $H_{out} = [H_{in} imes ext{scale_factor}]$

    $W_{out} = [W_{in} imes ext{scale_factor}]$

    unpooling

      Unpooling是在CNN中常用的来表示max pooling的逆操作。这是从2013年纽约大学Matthew D. Zeiler和Rob Fergus发表的《Visualizing and Understanding Convolutional Networks》中产生的idea:鉴于max pooling不可逆,因此使用近似的方式来反转得到max pooling操作之前的原始情况

      简单来说,记住做max pooling的时候的最大item的位置,比如一个3x3的矩阵,max pooling的size为2x2,stride为1,反卷积记住其位置,其余位置至为0就行:

    $$left[egin{array}{lll}
    1 & 2 & 3 \
    4 & 5 & 6 \
    7 & 8 & 9
    end{array} ight]->( ext { maxpooling })left[egin{array}{ll}
    5 & 6 \
    8 & 9
    end{array} ight]->( ext { unpooling })left[egin{array}{lll}
    0 & 0 & 0 \
    0 & 5 & 6 \
    0 & 8 & 9
    end{array} ight]$$

    方法一

    def unpool_with_with_argmax(pooled, ind, ksize=[1, 2, 2, 1]):
        """https://github.com/sangeet259/tensorflow_unpooling
          To unpool the tensor after  max_pool_with_argmax.
          Argumnets:
              pooled:    the max pooled output tensor
              ind:       argmax indices , the second output of max_pool_with_argmax
              ksize:     ksize should be the same as what you have used to pool
          Returns:
              unpooled:      the tensor after unpooling
          Some points to keep in mind ::
              1. In tensorflow the indices in argmax are flattened, so that a maximum value at position [b, y, x, c] becomes flattened index ((b * height + y) * width + x) * channels + c
              2. Due to point 1, use broadcasting to appropriately place the values at their right locations !
        """
        # Get the the shape of the tensor in th form of a list
        input_shape = pooled.get_shape().as_list()
        # Determine the output shape
        output_shape = (input_shape[0], input_shape[1] * ksize[1], input_shape[2] * ksize[2], input_shape[3])
        # Ceshape into one giant tensor for better workability
        pooled_ = tf.reshape(pooled, [input_shape[0] * input_shape[1] * input_shape[2] * input_shape[3]])
        # The indices in argmax are flattened, so that a maximum value at position [b, y, x, c] becomes flattened index ((b * height + y) * width + x) * channels + c
        # Create a single unit extended cuboid of length bath_size populating it with continous natural number from zero to batch_size
        batch_range = tf.reshape(tf.range(output_shape[0], dtype=ind.dtype), shape=[input_shape[0], 1, 1, 1])
        b = tf.ones_like(ind) * batch_range
        b_ = tf.reshape(b, [input_shape[0] * input_shape[1] * input_shape[2] * input_shape[3], 1])
        ind_ = tf.reshape(ind, [input_shape[0] * input_shape[1] * input_shape[2] * input_shape[3], 1])
        ind_ = tf.concat([b_, ind_], 1)
        ref = tf.Variable(tf.zeros([output_shape[0], output_shape[1] * output_shape[2] * output_shape[3]]))
        # Update the sparse matrix with the pooled values , it is a batch wise operation
        unpooled_ = tf.scatter_nd_update(ref, ind_, pooled_)
        # Reshape the vector to get the final result
        unpooled = tf.reshape(unpooled_, [output_shape[0], output_shape[1], output_shape[2], output_shape[3]])
        return unpooled
    
    
    original_tensor = tf.random_uniform([1, 4, 4, 3], maxval=100, dtype='float32', seed=2)
    pooled_tensor, max_indices = tf.nn.max_pool_with_argmax(original_tensor, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1],
                                                            padding='SAME')
    print(pooled_tensor.shape)  # (1, 2, 2, 3)
    unpooled_tensor = unpool_with_with_argmax(pooled_tensor, max_indices)
    print(unpooled_tensor.shape)    # (1, 4, 4, 3)
    View Code

    方法二

    from tensorflow.python.ops import gen_nn_ops
    
    inputs = tf.get_variable(name="a", shape=[64, 32, 32, 4], dtype=tf.float32,
                             initializer=tf.random_normal_initializer(mean=0, stddev=1))
    
    # 最大池化
    pool1 = tf.nn.max_pool(inputs,
                           ksize=[1, 2, 2, 1],
                           strides=[1, 2, 2, 1],
                           padding='SAME')
    print(pool1.shape)  # (64, 16, 16, 4)
    # 最大反池化
    grad = gen_nn_ops.max_pool_grad(inputs,  # 池化前的tensor,即max pool的输入
                                    pool1,  # 池化后的tensor,即max pool 的输出
                                    pool1,  # 需要进行反池化操作的tensor,可以是任意shape和pool1一样的tensor
                                    ksize=[1, 2, 2, 1],
                                    strides=[1, 2, 2, 1],
                                    padding='SAME')
    
    print(grad.shape)   # (64, 32, 32, 4)
    View Code

    在tensorflow 2.4版本中官方已经帮我们实现好了

    tf.keras.layers.UpSampling2D(size=(2, 2), data_format=None, interpolation='nearest')

    pytorch版本

    转置卷积

      转置卷积 (transpose convolution) 也会被称为 反卷积(Deconvolution),与Unpooling不同,使用反卷积来对图像进行上采样是可以习得的。通常用来对卷积层的结果进行上采样,使其回到原始图片的分辨率。

    PixelShuffle

      pixelshuffle算法的实现流程如上图,其实现的功能是:将一个[H, W]的低分辨率输入图像(Low Resolution),通过Sub-pixel操作将其变为[r*H, e*W]的高分辨率图像(High Resolution)。

      但是其实现过程不是直接通过插值等方式产生这个高分辨率图像,而是通过卷积先得到$r^2$个通道的特征图(特征图大小和输入低分辨率图像一致),然后通过周期筛选(periodic shuffing)的方法得到这个高分辨率的图像,其中$r$为上采样因子(upscaling factor),也就是图像的扩大倍率。

    二维SubPixel上采样

    [batch, height, width, channels * r * r] --> [batch, height * r, width * r, channels]

    tensorflow方法实现

    import tensorflow as tf
    
    
    def _phase_shift(I, r):
        # 相位偏移操作
        bsize, a, b, c = I.get_shape().as_list()
        bsize = tf.shape(I)[0]  # Handling Dimension(None) type for undefined batch dim
        X = tf.reshape(I, (bsize, a, b, r, r))
        X = tf.transpose(X, (0, 1, 2, 4, 3))  # bsize, a, b, 1, 1
        X = tf.split(X, a, 1)  # a, [bsize, b, r, r]
        X = tf.concat([tf.squeeze(x, axis=1) for x in X], axis=2)  # bsize, b, a*r, r
        X = tf.split(X, b, 1)  # b, [bsize, a*r, r]
        X = tf.concat([tf.squeeze(x, axis=1) for x in X], axis=2)  # bsize, a*r, b*r
        return tf.reshape(X, (bsize, a * r, b * r, 1))
    
    
    def PixelShuffle(X, r, color=False):
        if color:
            Xc = tf.split(X, 3, 3)
            X = tf.concat([_phase_shift(x, r) for x in Xc], axis=3)
        else:
            X = _phase_shift(X, r)
        return X
    
    
    if __name__ == "__main__":
        X1 = tf.get_variable(name='X1',
                             shape=[2, 8, 8, 4],
                             initializer=tf.random_normal_initializer(stddev=1.0),
                             dtype=tf.float32)
        Y = PixelShuffle(X1, 2)
        print(Y.shape)  # (2, 16, 16, 1)
    
        X2 = tf.get_variable(name='X2',
                             shape=[2, 8, 8, 4 * 3],
                             initializer=tf.random_normal_initializer(stddev=1.0),
                             dtype=tf.float32)
        Y2 = PixelShuffle(X2, 2, color=True)
        print(Y2.shape)  # (2, 16, 16, 3)
    View Code

    pytorch方法实现

    import torch
    import torch.nn as nn
    
    input = torch.randn(size=(1, 9, 4, 4))
    ps = nn.PixelShuffle(3)
    output = ps(input)
    print(output.size())    # torch.Size([1, 1, 12, 12])
    View Code

    numpy方法实现

    def PS(I, r):
      assert len(I.shape) == 3
      assert r>0
      r = int(r)
      O = np.zeros((I.shape[0]*r, I.shape[1]*r, I.shape[2]/(r*2)))
      for x in range(O.shape[0]):
        for y in range(O.shape[1]):
          for c in range(O.shape[2]):
            c += 1
            a = np.floor(x/r).astype("int")
            b = np.floor(y/r).astype("int")
            d = c*r*(y%r) + c*(x%r)
            print a, b, d
            O[x, y, c-1] = I[a, b, d]
      return O
    View Code

    一维SubPixel上采样

    (batch_size, width, channels * r)-->(batch_size, width * r, channels)

    tensorflow实现

    import tensorflow as tf
    
    
    def SubPixel1D(I, r):
        """一维subpixel upsampling layer,
        输入维度(batch, width, r).
        """
        with tf.name_scope('subpixel'):
            X = tf.transpose(I, [2, 1, 0])  # (r, w, b)
            X = tf.batch_to_space_nd(X, [r], [[0, 0]])  # (1, r*w, b)
            X = tf.transpose(X, [2, 1, 0])
            return X
    
    # 示例
    # ---------------------------------------------------
    if __name__ == "__main__":
        inputs = tf.get_variable(name='input',
                                 shape=[64, 8192, 32],
                                 initializer=tf.random_normal_initializer(stddev=1.0),
                                 dtype=tf.float32)
        upsample_SubPixel1D = SubPixel1D(I=inputs, r=2)
        print(upsample_SubPixel1D.shape)  # (64, 16384, 16)
    View Code

    pytorch方法实现

    class PixelShuffle1D(nn.Module):
        """
        1D pixel shuffler. https://arxiv.org/pdf/1609.05158.pdf
        Upscales sample length, downscales channel length
        "short" is input, "long" is output
        """
    
        def __init__(self, upscale_factor):
            super(PixelShuffle1D, self).__init__()
            self.upscale_factor = upscale_factor
    
        def forward(self, x):
            batch_size, channels, in_width = x.size()
    
            channels //= self.upscale_factor
            out_width = self.upscale_factor * in_width
    
            x = x.contiguous().view([batch_size, channels, self.upscale_factor, in_width])
            x = x.permute(0, 1, 3, 2).contiguous()
            x = x.view(batch_size, channels, out_width)
    
            return x
    View Code

    sub-pixel or fractional convolution可以看成是transposed convolution的一个特例

    Meta upscale module

    可以任意上采样尺寸,还不是很出名,等于后出名了再来补全

    参考

      这里很多API我还是分享的tensorflow 1.*的,主要原因是因为我最开始学深度学习的时候用的是 tensoflow 1,现在我已经转学pytorch了,今天看了看tensorflow,2版本已经发布一年多了,1版本相当于是烂尾了,2版本虽然解决了原来的问题,可是人是向前看的,我已经使用pytorch起来,再让我回头学tensorflow 2似乎是一件很不情愿的事情。而且tensorflow 2 已经在走向没落了,使用tensorflow 2的开源代码,除了google自家公司外,真的也越来越少。tensorflow加油吧,我内心深处还是喜欢你的,只不过pytorch太方便了,开源社区也很强大了。

    【文档】tensorflow官方文档

    【文档】pytorch官方文档

    【代码】2D_subpixel

    【代码】1D_pytorch-pixelshuffle1d

    【代码】1D_pytorch_pixelshuffle

    【论文】《Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network

    【动图】卷积的动画

  • 相关阅读:
    置入式广告 场景中并无实际对应物
    文本自动摘要的方法研究
    [翻译]用DataSource控件以外的方法为GridView提供数据
    留个纪念
    新街口
    [翻译]SharePoint2007中创建Forms认证方式的站点
    路不一定是死的
    网站转移小记
    [转载]什么时候使用webservice
    城市周末的夜还是那么美
  • 原文地址:https://www.cnblogs.com/LXP-Never/p/13181168.html
Copyright © 2011-2022 走看看