zoukankan      html  css  js  c++  java
  • [Powershell] An algorithm to 9x9 sudoku.

    Sudoku is a numbers filling game, most known by people is 9x9 class, the algorithm is using confirmed numbers to get all possible numbers for each cell, if the number if possible numbers for a cell is 1, then the cell value confirmed, if greater or equal than 2, script makes loop and calculates a potential answer. Since answers are not unique, so a parameter is added to specify how many answers to return.

    Welcome email to: larry.song@outlook.com

    param(
        # 返回几个答案
        [int]$HowManyAnswersYouWanttoGet = 1
    )
    
    $SudokuMatrix = @(
        @(0,0,0, 0,0,0, 0,0,3),
        @(0,0,0, 0,0,0, 0,4,0),
        @(0,5,1, 6,0,0, 0,0,0),
        
        @(0,3,0, 0,0,8, 0,0,2),
        @(9,0,0, 1,6,0, 0,0,0),
        @(0,6,0, 0,5,4, 0,0,0),
        
        @(5,4,0, 0,0,0, 0,2,0),
        @(0,0,3, 4,0,2, 0,0,0),
        @(0,0,8, 3,0,0, 7,1,0)
    )
    # Loop each cell, add array [1..9] for each null cell.
    for($i = 0; $i -lt 9; $i++){
        for($j = 0; $j -lt 9; $j++){
            if(!$SudokuMatrix[$i][$j]){
                $SudokuMatrix[$i][$j] = 1..9
            }else{
                $SudokuMatrix[$i][$j] = @($SudokuMatrix[$i][$j])
            }
        }
    }
    
    # Loop each cell, calculate possible numbers to remove impossible numbers for the cell.
    function GoLoop($arr){
        $NewArr = @($null) * 9
        for($i = 0; $i -lt 9; $i++){
            $NewArr[$i] = $arr[$i].PSObject.Copy()
        }
        for($i = 0; $i -lt 9; $i++){
            for($j = 0; $j -lt 9; $j++){
                if($NewArr[$i][$j].Count -ne 1){
                    for($k = 0; $k -lt 9; $k++){
                        if($NewArr[$i][$k].Count -eq 1 -and $NewArr[$i][$j].Count -ne 1){
                            $NewArr[$i][$j] = @($NewArr[$i][$j] | ?{$_ -ne $NewArr[$i][$k][0]})
                        }
                        if($NewArr[$k][$j].Count -eq 1 -and $NewArr[$i][$j].Count -ne 1){
                            $NewArr[$i][$j] = @($NewArr[$i][$j] | ?{$_ -ne $NewArr[$k][$j][0]})
                        }
                    }
                }
            }
        }
        return $NewArr
    }
    
    # Loop each cell, if the possible number of the cell is null, means current calculation is wrong.
    function VerifyZero($arr){
        for($i = 0; $i -lt 9; $i++){
            for($j = 0; $j -lt 9; $j++){
                if($arr[$i][$j].Count -eq 0){
                    return $i, $j, $true
                }
            }
        }
        return $i, $j, $false
    }
    
    # Find the most less of possible numbers for a cell, return the position.
    function FindSmallest($arr){
        foreach($k in 2..9){
            for($i = 0; $i -lt 9; $i++){
                for($j = 0; $j -lt 9; $j++){
                    if($arr[$i][$j].Count -eq $k){
                        return $i, $j, $k
                    }
                }
            }
        }
    }
    
    # Calculate how many cells have been confirmed, if it's 81, correct answer hit.
    function CountConfirmedNumber($arr){
        $NumberConfirmed = 0
        for($i = 0; $i -lt 9; $i++){
            for($j = 0; $j -lt 9; $j++){
                if($arr[$i][$j].Count -eq 1){
                    $NumberConfirmed++
                }
            }
        }
        return $NumberConfirmed
    }
    
    $AnswerCount = 0
    $Results = @()
    
    function GoCalculate($arr){
        $NewArray = GoLoop($arr)
        # verify no zero option!
        $ZeroPosition = VerifyZero($NewArray)
        if($ZeroPosition[2]){
            # Write-Host "0 option found: [$($ZeroPosition[0])][$($ZeroPosition[1])]"
            return
        }
        # confirm current numbers
        if((CountConfirmedNumber($NewArray)) -eq 81){
            $Script:AnswerCount++
            Write-Host "An answer captured, ID: $AnswerCount" -ForegroundColor Green
            # Write-Host "81 numbers confirmed."
            $Script:Results += $null
            $Script:Results[-1] = $NewArray
            return
        }
        # find the nearest(to [0][0]) and smallest(2 to 9) option element.
        $Smallest = FindSmallest($NewArray)
        $OptionsStack = @($NewArray[$Smallest[0]][$Smallest[1]])
        # Write-Host "Row: $($Smallest[0]); Col: $($Smallest[1]); Option: $($OptionsStack -join ' ')"
        foreach($Option in $OptionsStack){
            # Write-Host "Set [$($Smallest[0])][$($Smallest[1])] to: $Option"
            $NewArray[$Smallest[0]][$Smallest[1]] = @($Option)
            if($AnswerCount -lt $HowManyAnswersYouWanttoGet){
                GoCalculate($NewArray)
            }
        }
    }
    # Trigger
    GoCalculate($SudokuMatrix)
    
    # Output answers
    $Results | %{
        if($_ -eq $null){return}
        Write-Host "Answer:" -ForegroundColor Yellow
        for($i = 0; $i -lt 9; $i++){
            for($j = 0; $j -lt 9; $j++){
                Write-Host "$($_[$i][$j][0]) " -NoNewline -ForegroundColor yellow
            }
            Write-Host "`n"
        }
    }
  • 相关阅读:
    【BZOJ4337】[BJOI2015] 树的同构(哈希水题)
    【BZOJ4176】Lucas的数论(杜教筛)
    【BZOJ2627】JZPKIL(数论大杂烩)
    【BZOJ2228】[ZJOI2011] 礼物(巧妙的三部曲)
    【BZOJ2954】[POI2002] 超级马(暴搜)
    【BZOJ4498】魔法的碰撞(动态规划)
    【BZOJ3489】A simple rmq problem(三维数点)
    【BZOJ2626】JZPFAR(KD-Tree)
    【BZOJ4520】[CQOI2016] K远点对(KD-Tree)
    【BZOJ1941】[SDOI2010] Hide and Seek(KD-Tree)
  • 原文地址:https://www.cnblogs.com/LarryAtCNBlog/p/4307965.html
Copyright © 2011-2022 走看看