zoukankan      html  css  js  c++  java
  • BZOJ 4816[SDOI2017]数字表格(莫比乌斯反演)

    题目链接

    (Description)
    (f_i)表示(fibonacci)数列第(i)项,求(prod_{i=1}^{n}prod_{j=1}^{m}f[gcd(i,j)])

    (T<=10^3,n,m≤10^6)


    (Solution)
    再来推式子(默认(n<m))

    [prod_{i=1}^{n}prod_{j=1}^mf[gcd(i,j)] ]

    按照套路枚举(gcd)

    [prod_{d=1}^nprod_{i=1}^{n/d}prod_{j=1}^{m/d}f[d][gcd(i,j)==1] ]

    考虑每个(f[d])被乘了多少次

    [prod_{d=1}^nf[d]^{sum_{i=1}^{n/d}sum_{j=1}^{m/d}[gcd(i,j)==1]} ]

    指数非常熟悉

    [sum_{i=1}^{n/d}sum_{j=1}^{m/d}[gcd(i,j)==1]=sum_{i=1}^{n/d}mu(i)lfloorfrac{n}{id} floorleftlfloorfrac{m}{id} ight floor ]

    现在指数可以数论分块,对(f)做一个前缀积之后外层也可以数论分块,这就可以做到每次询问(O(nlogn))了。
    但是这个式子还可以继续推,我们可以枚举(id)
    (T=id)

    [prod_{T=1}^nprod_{d|T}f[d]^{mu(T/d)lfloorfrac{n}{T} floorlfloorfrac{m}{T} floor} ]

    根据数学运算法则就可以这样算

    [prod_{T=1}^n(prod_{d|T}f[d]^{mu(T/d)})^{lfloorfrac{n}{T} floorlfloorfrac{m}{T} floor} ]

    括号里面的式子可以预处理,乘方可以数论分块,这样就可以单词询问(O(sqrt n logn))了。

    #include<complex>
    #include<cstdio>
    using namespace std;
    const int mod=1e9+7;
    const int N=1e6+7;
    int Q,n,m,tot;
    int prime[N],mu[N],f[N],g[N],pro[N];
    bool check[N];
    int qread()
    {
    	int x=0;
    	char ch=getchar();
    	while(ch<'0' || ch>'9')ch=getchar();
    	while(ch>='0' && ch<='9'){x=x*10+ch-'0';ch=getchar();}
    	return x;
    }
    int Fpow(long long b,int p)
    {
    	long long res=1;
    	for(;p;p>>=1,b=b*b%mod)
    		if(p&1)res=res*b%mod;
    	return res;
    }
    void Init()
    {
    	check[1]=1;
    	mu[1]=f[1]=pro[0]=pro[1]=g[1]=1;
    	for(int i=2;i<N;i++)
    	{
    		if(!check[i])prime[++tot]=i,mu[i]=-1;
    		for(int j=1;j<=tot && i*prime[j]<N;j++)
    		{
    			check[i*prime[j]]=1;
    			if(i%prime[j])mu[i*prime[j]]=-mu[i];
    			else break;
    		}
    		f[i]=(f[i-1]+f[i-2])%mod;pro[i]=1;
    		g[i]=Fpow(f[i],mod-2);
    	}
    	for(int i=1;i<N;i++)
    	{
    		if(!mu[i])continue;
    		for(int j=i;j<N;j+=i)
    			pro[j]=1ll*pro[j]*(mu[i]==1?f[j/i]:g[j/i])%mod;
    	}
    	for(int i=2;i<N;i++)
    		pro[i]=1ll*pro[i]*pro[i-1]%mod;
    }
    int main()
    {
    	Init();
    	scanf("%d",&Q);
    	while(Q--)
    	{
    		n=qread();m=qread();
    		if(n>m)swap(n,m);
    		int ans=1;
    		for(int l=1,r;l<=n;l=r+1)
    		{
    			r=min(n/(n/l),m/(m/l));
    			ans=1ll*ans*Fpow(1ll*pro[r]*Fpow(pro[l-1],mod-2)%mod,1ll*(n/l)*(m/l)%(mod-1))%mod;
    		}
    		printf("%d
    ",ans);
    	}
    	return 0;
    }
    
  • 相关阅读:
    cmd设置代理
    移动端坐标定位tap
    T02-Django基本应用结构
    支持向量机算法的Sklearn完整复现
    T01-何为Django,入门"Hello World"
    决策树算法的Sklearn完整复现
    逻辑回归算法的Sklearn完整复现
    线性回归算法Sklearn完整复现
    K-近邻算法的Sklearn完整复现
    数据分析中的'疑难杂症'小结(三)
  • 原文地址:https://www.cnblogs.com/LeTri/p/10334467.html
Copyright © 2011-2022 走看看