zoukankan      html  css  js  c++  java
  • Tensorboard SummaryWriter()

    import torch
    import torch.nn as nn
    import torch.nn.functional as F
    import torchvision
    import torchvision.transforms as transforms
    import torch.optim as optim
    
    from torch.utils.tensorboard import SummaryWriter
    
    batch_size_list = [100, 1000, 10000]
    lr_list = [.01, .001, .0001, .00001]
    shuffle = [True,False]
    def get_num_correct(preds, labels):
        return preds.argmax(dim=1).eq(labels).sum().item()
    
    train_set = torchvision.datasets.FashionMNIST(
        root='./data/FashionMNIST',
        train=True,
        download=True,
        transform=transforms.Compose([transforms.ToTensor()])
    )
    
    # data_loader = torch.utils.data.DataLoader(train_set,batch_size=batch_size,shuffle=True)  # shuffle=True
    
    
    
    class Network(nn.Module):
        def __init__(self):
            super().__init__()
            self.conv1 = nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5)
            self.conv2 = nn.Conv2d(in_channels=6, out_channels=12, kernel_size=5)
    
            self.fc1 = nn.Linear(in_features=12 * 4 * 4, out_features=120)
            self.fc2 = nn.Linear(in_features=120, out_features=60)
            self.out = nn.Linear(in_features=60, out_features=10)
    
        def forward(self, t):
            # (1) input layer
            t = t
    
            # (2) hidden conv layer
            t = self.conv1(t)
            t = F.relu(t)
            t = F.max_pool2d(t, kernel_size=2, stride=2)
    
            # (3) hidden conv layer
            t = self.conv2(t)
            t = F.relu(t)
            t = F.max_pool2d(t, kernel_size=2, stride=2)
    
            # (4) hidden Linear layer
            t = t.reshape(-1, 12 * 4 * 4)  # -1表示对行没约束,反正是12*4*4列
            t = self.fc1(t)
            t = F.relu(t)
            # (5) hidden Linear layer
            t = self.fc2(t)
            t = F.relu(t)
            # (6) output layer
            t = self.out(t)
            # t=F.softmax(t,dim=1) #此处不使用softmax函数,因为在训练中我们使用了交叉熵损失函数,而在torch.nn函数类中,已经在其输入中隐式的
            # 执行了一个softmax操作,这里我们只返回最后一个线性变换的结果,也即是 return t,也即意味着我们的网络将使用softmax操作进行训练,但在
            # 训练完成后,将不需要额外的计算操纵。
    
            return t
    
    network = Network()
    
    for batch_size in batch_size_list:
        for lr in lr_list:
            network = Network()
    
            data_loader = torch.utils.data.DataLoader(
                train_set, batch_size=batch_size
            )
            optimizer = optim.Adam(
                network.parameters(), lr=lr
            )
    
            images, labels = next(iter(data_loader))
            grid = torchvision.utils.make_grid(images)
    
            comment=f' batch_size={batch_size} lr={lr}'
            tb = SummaryWriter(comment=comment)
            tb.add_image('images', grid)
            tb.add_graph(network, images)
    
            for epoch in range(5):
                total_loss = 0
                total_correct = 0
                for batch in data_loader:
                    images, labels = batch # Get Batch
                    preds = network(images) # Pass Batch
                    loss = F.cross_entropy(preds, labels) # Calculate Loss
                    optimizer.zero_grad() # Zero Gradients
                    loss.backward() # Calculate Gradients
                    optimizer.step() # Update Weights
    
                    total_loss += loss.item() * batch_size#这里上述用的是mini-batch训练方法,一个batch得loss会被平均,所以乘以size得到总和
                    total_correct += get_num_correct(preds, labels)
    
                tb.add_scalar(
                    'Loss', total_loss, epoch
                )
                tb.add_scalar(
                    'Number Correct', total_correct, epoch
                )
                tb.add_scalar(
                    'Accuracy', total_correct / len(train_set), epoch
                )
    
                for name, param in network.named_parameters():
                    tb.add_histogram(name, param, epoch)
                    tb.add_histogram(f'{name}.grad', param.grad, epoch)
    
                print(
                    "epoch", epoch
                    ,"total_correct:", total_correct
                    ,"loss:", total_loss
                )
            tb.close()
    
    f'''
    from itertools import product
    
    parameters=dict(lr=[.01,.001],batch_size=[10,100,1000],shuffle=[True,False])
    # for i,j in parameters.items():
    #     print(i,j,sep='	')
    para_values=[value for value in parameters.values()]
    for lr,batch_size,shuffle in product(*para_values):#这里的星号告诉乘积函数把列表中的每个值作为参数,而不是把列表本身作为参数来对待
        comment=f' batch_size={batch_size} lr={lr} shuffle={shuffle}'
        print(lr,batch_size,shuffle)
    '''
    

      

  • 相关阅读:
    前缀和问题
    AtCoder Beginner Contest 085(ABCD)
    73.链表的基本操作
    112、文本串的加密
    100.容器List-ArrayList
    GUI颜色、字体设置对话框
    (贪心)多机调度问题
    POJ-1700 Crossing River
    lower_bound() upper_bound()函数
    HDU 1141
  • 原文地址:https://www.cnblogs.com/Li-JT/p/15175848.html
Copyright © 2011-2022 走看看