zoukankan      html  css  js  c++  java
  • luogu4389 付公主的背包

    题目描述:

    luogu

    题解:

    生成函数+多项式exp板子。

    首先商品默认无穷件。所以对于价值为$k$的商品,其生成函数为$frac{1}{1-x^k}$。

    然后集体取ln求和然后再exp就好了。

    但是这个算法的瓶颈在集体取ln。

    发现一个性质:$$ln(frac{1}{1-x^k})=-ln(1-x^k)$$

    $$=- int frac{-kx^{k-1}}{1-x^k}$$

    $$=int kx^{k-1}*sum_{i=0}^{infty}x^{ki}$$

    $$=int sum_{i=0}^{infty} kx^{ki+k-1}$$

    $$=sum_{i=0}^{infty} frac{x^{k*(i+1)}}{i+1}$$

    $$=sum_{i=1}^{infty} frac{x^{ki}}{i}$$

    然后?敲板子啊。

    代码:

    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    typedef long long ll;
    const int N = 500040;
    const int MOD = 998244353;
    template<typename T>
    inline void read(T&x)
    {
        T f = 1,c = 0;char ch=getchar();
        while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
        while(ch>='0'&&ch<='9'){c=c*10+ch-'0';ch=getchar();}
        x = f*c;
    }
    template<typename T>
    void Mod(T&x){if(x>=MOD)x-=MOD;}
    int fastpow(int x,int y)
    {
        int ret = 1;
        while(y)
        {
            if(y&1)ret=1ll*ret*x%MOD;
            x=1ll*x*x%MOD;y>>=1;
        }
        return ret;
    }
    int inv(int x){return fastpow(x,MOD-2);}
    int n,m,HS[N],ny[N],to[N],lim,L,LL[N];
    int init(int n)
    {
        lim = LL[2] = 1;
        while(lim<=n)lim<<=1,LL[lim<<1]=LL[lim]+1;
        return lim;
    }
    void ntt(int*a,int len,int k)
    {
        for(int i=0;i<len;i++)
            if(i<to[i])swap(a[i],a[to[i]]);
        for(int i=1;i<len;i<<=1)
        {
            int w0 = fastpow(3,(MOD-1)/(i<<1));
            for(int j=0;j<len;j+=(i<<1))
            {
                int w = 1;
                for(int o=0;o<i;o++,w=1ll*w*w0%MOD)
                {
                    int w1 = a[j+o],w2 = 1ll*a[j+o+i]*w%MOD;
                    a[j+o] = (w1+w2)%MOD;
                    a[j+o+i] = (w1+MOD-w2)%MOD;
                }
            }
        }
        if(k==-1)
        {
            for(int i=1;i<len>>1;i++)swap(a[i],a[len-i]);
            int Inv = inv(len);
            for(int i=0;i<len;i++)a[i]=1ll*a[i]*Inv%MOD;
        }
    }
    void get_lim(int len)
    {
        lim = len,L = LL[len];
        for(int i=1;i<lim;i++)to[i]=((to[i>>1]>>1)|((i&1)<<(L-1)));
    }
    int a[N],b[N],c[N];
    void mul(int*A,int*B,int len)
    {
        get_lim(len<<1);
        for(int i=0;i<lim;i++)a[i]=b[i]=0;
        for(int i=0;i<len;i++)a[i]=A[i],b[i]=B[i];
        ntt(a,lim,1),ntt(b,lim,1);
        for(int i=0;i<lim;i++)c[i]=1ll*a[i]*b[i]%MOD;
        ntt(c,lim,-1);
    }
    void get_inv(int*F,int*G,int len)
    {
        if(len==1){G[0]=inv(F[0]);return ;}
        get_inv(F,G,len>>1);get_lim(len<<1);
        for(int i=0;i<lim;i++)a[i]=b[i]=0;
        for(int i=0;i<len;i++)a[i]=F[i];
        for(int i=0;i<len>>1;i++)b[i]=G[i];
        ntt(a,lim,1),ntt(b,lim,1);
        for(int i=0;i<lim;i++)c[i]=1ll*a[i]*b[i]%MOD*b[i]%MOD;
        ntt(c,lim,-1);
        for(int i=0;i<len;i++)G[i]=(2ll*G[i]%MOD+MOD-c[i])%MOD;
    }
    void get_d(int*F,int*G,int len)
    {
        for(int i=1;i<len;i++)G[i-1]=1ll*F[i]*i%MOD;
        G[len-1] = 0;
    }
    void get_j(int*F,int*G,int len)
    {
        for(int i=len-1;i;i--)G[i]=1ll*F[i-1]*ny[i]%MOD;
        G[0] = 0;
    }
    int I[N],Ln[N],T[N];
    void get_ln(int*F,int*G,int len)
    {
        for(int i=0;i<len;i++)I[i]=0;
        get_inv(F,I,len);get_d(F,T,len);mul(T,I,len);
        get_j(c,G,len);
    }
    void get_exp(int*F,int*G,int len)
    {
        if(len==1){G[0]=1;return ;}
        get_exp(F,G,len>>1);get_ln(G,Ln,len);
        for(int i=0;i<len;i++)Mod(Ln[i]=F[i]+MOD-Ln[i]);
        Mod(++Ln[0]);mul(G,Ln,len);
        for(int i=0;i<len;i++)G[i]=c[i];
    }
    int F[N],G[N];
    int main()
    {
    //    freopen("tt.in","r",stdin);
        read(n),read(m);
        for(int v,i=1;i<=n;i++)
            read(v),HS[v]++;
        int mx = init(m);
        ny[1] = 1;
        for(int i=2;i<mx;i++)
            ny[i] = 1ll*(MOD-MOD/i)*ny[MOD%i]%MOD;
        for(int i=1;i<=m;i++)if(HS[i])
            for(int j=1;i*j<=m;j++)
                Mod(F[i*j]+=1ll*HS[i]*ny[j]%MOD);
        get_exp(F,G,mx);
        for(int i=1;i<=m;i++)
            printf("%d
    ",G[i]);
        return 0;
    }
    View Code
  • 相关阅读:
    第八章 采样
    第七章 优化算法
    第六章 概率图模型
    第五章 非监督学习
    第四章 降维
    第三章 经典算法
    第二章 模型评估
    第一章 特征工程-------------《百面机器学习》
    中等-102,107-二叉树的层序遍历
    字符串单模式匹配 暴力+哈希
  • 原文地址:https://www.cnblogs.com/LiGuanlin1124/p/11073984.html
Copyright © 2011-2022 走看看