zoukankan      html  css  js  c++  java
  • humble_USACO

    Humble Numbers

    For a given set of K prime numbers S = {p1, p2, ..., pK}, consider the set of all numbers whose prime factors are a subset of S. This set contains, for example, p1, p1p2, p1p1, and p1p2p3 (among others). This is the set of `humble numbers' for the input set S. Note: The number 1 is explicitly declared not to be a humble number.

    Your job is to find the Nth humble number for a given set S. Long integers (signed 32-bit) will be adequate for all solutions.

    PROGRAM NAME: humble

    INPUT FORMAT

    Line 1: Two space separated integers: K and N, 1 <= K <=100 and 1 <= N <= 100,000.
    Line 2: K space separated positive integers that comprise the set S.

    SAMPLE INPUT (file humble.in)

    4 19
    2 3 5 7
    

    OUTPUT FORMAT

    The Nth humble number from set S printed alone on a line.

    SAMPLE OUTPUT (file humble.out)

    27

    题意:对于一给定的素数集合 S = {p1, p2, ..., pK},考虑一个正整数集合,该集合中任一元素的质因数全部属于S。这个正整数集合包括,p1、p1*p2、p1*p1、p1*p2*p3...(还有其它)。该集合被称为S集合的“丑数集合”。

    注意:我们认为1不是一个丑数。

    你的工作是对于输入的集合S去寻找“丑数集合”中的第N个“丑数”。所有答案可以用longint(32位整数)存储。

    补充:丑数集合中每个数从小到大排列,每个丑数都是素数集合中的数的乘积,第N个“丑数”就是在能由素数集合中的数相乘得来的(包括它本身)第n小的数。

    /*
    ID: LinKArftc
    PROG: humble
    LANG: C++
    */
    
    #include <map>
    #include <set>
    #include <cmath>
    #include <stack>
    #include <queue>
    #include <vector>
    #include <cstdio>
    #include <string>
    #include <utility>
    #include <cstdlib>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    using namespace std;
    #define eps 1e-8
    #define randin srand((unsigned int)time(NULL))
    #define input freopen("input.txt","r",stdin)
    #define debug(s) cout << "s = " << s << endl;
    #define outstars cout << "*************" << endl;
    const double PI = acos(-1.0);
    const int inf = 0x3f3f3f3f;
    const int INF = 0x7fffffff;
    typedef long long ll;
    
    const int maxn = 100010;
    const int maxm = 110;
    
    ll num[maxm], ri[maxm], ans[maxn];
    int k, n;
    
    int main() {
        freopen("humble.in", "r", stdin);
        freopen("humble.out", "w", stdout);
        int tot = 0;
        scanf("%d %d", &n, &k);
        for (int i = 0; i < n; i ++) scanf("%lld", &num[i]);
        ans[tot ++] = 1;
        memset(ri, 0, sizeof(ri));
        while (tot < k + 1) {
            int ii;
            ll mi = 0x7fffffffffffffff;
            for (int i = 0; i < n; i ++) {
                while (num[i] * ans[ri[i]] <= ans[tot-1]) ri[i]++;
                if (num[i] * ans[ri[i]] < mi) {
                    mi = num[i] * ans[ri[i]];
                    ii = i;
                }
            }
            ans[tot++] = mi;
            ri[ii] ++;
        }
        printf("%lld
    ", ans[k]);
    
        return 0;
    }
  • 相关阅读:
    css文本及文本装饰
    css尺寸常用样式
    了解css的两大特性
    css长度单位及字体
    css颜色
    css选择器详解
    了解css
    html行级元素与块级元素以及meta标签的使用
    了解html表单
    html图片和html实体
  • 原文地址:https://www.cnblogs.com/LinKArftc/p/5003541.html
Copyright © 2011-2022 走看看