链接:https://www.nowcoder.com/acm/contest/141/H
来源:牛客网
Eddy has solved lots of problem involving calculating the number of coprime pairs within some range. This problem can be solved with inclusion-exclusion method. Eddy has implemented it lots of times. Someday, when he encounters another coprime pairs problem, he comes up with diff-prime pairs problem. diff-prime pairs problem is that given N, you need to find the number of pairs (i, j), where and are both prime and i ,j ≤ N. gcd(i, j) is the greatest common divisor of i and j. Prime is an integer greater than 1 and has only 2 positive divisors.
Eddy tried to solve it with inclusion-exclusion method but failed. Please help Eddy to solve this problem.
Note that pair (i1, j1) and pair (i2, j2) are considered different if i1 ≠ i2 or j1 ≠ j2.
Eddy tried to solve it with inclusion-exclusion method but failed. Please help Eddy to solve this problem.
Note that pair (i1, j1) and pair (i2, j2) are considered different if i1 ≠ i2 or j1 ≠ j2.
输入描述:
Input has only one line containing a positive integer N.
1 ≤ N ≤ 10
7
输出描述:
Output one line containing a non-negative integer indicating the number of diff-prime pairs (i,j) where i, j ≤ N
示例1
输入
3
输出
2
示例2
输入
5
输出
复制6
题意:输入一个n,n里面选一对数,满足 这两个式子的数都是素数,不同顺序也算是另一对
思路:我们会发现i,j都是素数的话,那么最大公约数为1,那么肯定是一对,然后我们再想想(6,10),(6,9)...都是
那么他们有什么规律呢,就是我们要使除了两个数的最大公约数之后都是素数,那么说明两个数分解之后就应该是 a=(素数)x*n b=(素数)y*n
n是最大公约数那么其他的满足这个条件对数其实就是一个素数对,同时乘以一个数那么也是,例如(2,3)那么(4,6)(6,9)(8,12)都是
满足条件的数,那么我们应该怎么计算呢,下面我们讲个例子
首先想10以内有几个3的倍数呢,10/3=3个,这是常识
那么我们就来计算,由所有的素数对扩展
10以内的所有对,因为我们首先应该找出素数对,所以我们应该是遍历所有的素数,
第一个 2 :10/2=5,10以内有5个2的倍数,我们再看2的前面有没有素数,没有,不计算
第二个 3 :10/3=3 ....3 6 9,前面有素数2,我们就可以找到素数2组成(2,3),然后两个数同时乘以2,3,因为前面的
小,所以我们始终能在6 9 前面找到4 6组成(4,6)(6,9)
第三个:5...
第四个:7...
下面看代码实现
#include<bits/stdc++.h> #define fi first #define ll long long #define pll pair<int,int> #define se second #define mod 1000000007 using namespace std; const int maxn = 10000010; bool isPrime[maxn]; ll prime[maxn]; ll sum[maxn]; ll add[maxn]; ll total=0; map< pll ,int> mp; void makePrime2()//筛法找出所有的素数 { memset(isPrime,true,sizeof(isPrime)); memset(prime,0,sizeof(prime)); sum[1]=0; for(int i=2; i<maxn; i++) { if(isPrime[i]) { prime[total++]=i; sum[i]=sum[i-1]+1;//用于存当前位置有多少个素数 } else sum[i]=sum[i-1]; for(int j=0; j<total && i*prime[j]<maxn; j++) { isPrime[i*prime[j]]=false; if(i%prime[j]==0) break; } } } int main() { makePrime2(); ll n; scanf("%lld",&n); ll ans=0; for(int i=0; i<total&&prime[i]<=n; i++) { int p=n/prime[i];//找出n以内有多少个素数prime[i]的倍数 ans+=(sum[prime[i]]-1)*p;//-1因为本身这个素数不算,然后和前面的素数进行匹配与扩展 } printf("%lld ",ans*2); }