zoukankan      html  css  js  c++  java
  • FFT初解(转)

    源:FFT初解

    一.前言

      首先申明俺不是一个算法工程师,俺是一个底层驱动工程师,有人会发问一个底层驱动工程师需要这个吗?但是我不幸的告诉你,确实是需要的,不过我们不要像算法工程师那样搞得很精通,但是还是需要去了解这是个什么东西。说实话,这个东西在大学时候学过,还好好的去理解了一样,不过到现在忘的差不多了,这愈发的让我明白一句话,好记性不如烂笔头,如果以前有好好记录的好习惯,那现在只要把以前的东西拿出来看看再印证一下就可以了。不过历史不可以如果。为了不让明天继续懊悔今天,在这里记录下本人学习的一些记录。

    二.FFT的数学基础

      FFT是什么,额,说白了就是一种时域和频域变换的手段。什么是时域什么是频域,额,你google吧,鄙视百度!

      这里说明一下,相比较FFT而言,我们更加关心离散傅里叶变换(DTF),因为我们底层驱动工程师面对的是一个一个离散的数据。也许大家还是对FFT的变换的概念还不理解,那我们举个例子来说吧:

      1、AD在一个1Hz正弦波周期采集了1024个数据(即你的采样频率为1024Hz),从时域上看1s内采集了1024数据,那1024个数据做1024点的FFT变换。我们以数据的下标作为横轴,而数据的值作为纵轴,你会发现第一个点的值最大,我们可以从该值计算出我们被采样的频率为1Hz,值是这样算出来的1024(Hz)/1024*1 = 1Hz,如果最大的值点是第8个点,那被采样频率是8Hz。不过要满足乃奎斯定律,即采样频率大于被采样频率的两倍。

      为什么会有东西出现呢,主要是时域的信号好采样,至于频域的信号难以采样,于是傅里叶这个天才就发明了这个东东,不过这可是现代数字信号处理的基础。

      闲话不说了,还是来看DFT的数学基础(下面的内容不少拷贝wiki的):

    ...

    8点快速傅里叶变换

    主要是蝶形算法

    FFT算法图

  • 相关阅读:
    Codevs 2296 仪仗队 2008年省队选拔赛山东
    Codevs 1535 封锁阳光大学
    Codevs 1069 关押罪犯 2010年NOIP全国联赛提高组
    Codevs 1218 疫情控制 2012年NOIP全国联赛提高组
    Codevs 1684 垃圾陷阱
    洛谷 P1108 低价购买
    Vijos P1325桐桐的糖果计划
    Codevs 3289 花匠 2013年NOIP全国联赛提高组
    Codevs 2611 观光旅游(floyed最小环)
    C语言基础之彩色版C语言(内含linux)
  • 原文地址:https://www.cnblogs.com/LittleTiger/p/4721085.html
Copyright © 2011-2022 走看看