KMP算法
KMP的基处题目,数字数组的KMP算法应用。
主要是next[]数组的构造,next[]存储的是字符的当前字串,与子串前字符匹配的字符数。
移动位数 = 已匹配的字符数 - 对应的部分匹配值
Problem Description
Given two sequences of numbers : a[1], a[2], ...... , a[N], and b[1], b[2], ...... , b[M] (1 <= M <= 10000, 1 <= N <= 1000000). Your task is to find a number K which make a[K] = b[1], a[K + 1] = b[2], ...... , a[K + M - 1] = b[M]. If there are more than one K exist, output the smallest one.
Input
The first line of input is a number T which indicate the number of cases. Each case contains three lines. The first line is two numbers N and M (1 <= M <= 10000, 1 <= N <= 1000000). The second line contains N integers which indicate a[1], a[2], ...... , a[N]. The third line contains M integers which indicate b[1], b[2], ...... , b[M]. All integers are in the range of [-1000000, 1000000].
Output
For each test case, you should output one line which only contain K described above. If no such K exists, output -1 instead.
Sample Input
2 13 5 1 2 1 2 3 1 2 3 1 3 2 1 2 1 2 3 1 3 13 5 1 2 1 2 3 1 2 3 1 3 2 1 2 1 2 3 2 1
Sample Output
6 -1
Source
HDU 2007-Spring Programming Contest
1 #include<stdio.h> 2 int a[1000001],b[10001],next[10001]; 3 void getnext(int m){ 4 int i=1,j=0; 5 next[1]=0; 6 while(i<m){ 7 if(j==0||b[i]==b[j]){ 8 i++; j++; next[i]=j; 9 } 10 else j=next[j]; 11 } 12 } 13 14 void getk(int n,int m){ 15 int i=1,j=1; 16 while(i<=n&&j<=m){ 17 if(j==0||a[i]==b[j]){i++; j++;} 18 else j=next[j]; 19 } 20 if(j>m) printf("%d ",i-m); 21 else printf("-1 "); 22 } 23 24 int main() 25 { 26 int t,n,m,i,j; 27 scanf("%d",&t); 28 while(t--){ 29 scanf("%d%d",&n,&m); 30 for(i=1;i<=n;i++) scanf("%d",&a[i]); 31 for(i=1;i<=m;i++) scanf("%d",&b[i]); 32 getnext(m); 33 getk(n,m); 34 } 35 return 0; 36 }