zoukankan      html  css  js  c++  java
  • hdu 2202 最大三角形 (Convex Hull && (Bruce Force || Rotate Stuck))

    Problem - 2202

      题目中文,不另外解释。

      做法是构造出凸包,估计点是随机出的,所以凸包的大小不会太大,于是可以直接对凸包上的点进行暴力计算三角形的面积。

      如果随机的点是n个,凸包上面有m个点,那么复杂度就是O(n+m^3)。代码如下:

     1 #include <cstdio>
     2 #include <cstring>
     3 #include <cmath>
     4 #include <algorithm>
     5 #include <iostream>
     6 
     7 using namespace std;
     8 
     9 const double EPS = 1e-8;
    10 inline int sgn(double x) { return (x > EPS) - (x < -EPS);}
    11 struct Point {
    12     double x, y;
    13     Point() {}
    14     Point(double x, double y) : x(x), y(y) {}
    15     bool operator < (Point a) const { return sgn(x - a.x) < 0 || sgn(x - a.x) == 0 && y < a.y;}
    16     bool operator == (Point a) const { return sgn(x - a.x) == 0 && sgn(y - a.y) == 0;}
    17     Point operator + (Point a) const { return Point(x + a.x, y + a.y);}
    18     Point operator - (Point a) const { return Point(x - a.x, y - a.y);}
    19     Point operator * (double p) const { return Point(x * p, y * p);}
    20     Point operator / (double p) const { return Point(x / p, y / p);}
    21 } ;
    22 typedef Point Vec;
    23 inline double crossDet(Point a, Point b) { return a.x * b.y - a.y * b.x;}
    24 inline double crossDet(Point o, Point a, Point b) { return crossDet(a - o, b - o);}
    25 inline double dotDet(Point a, Point b) { return a.x * b.x + a.y * b.y;}
    26 inline double vecLen(Vec x) { return sqrt(dotDet(x, x));}
    27 
    28 struct Line {
    29     Point s, t;
    30     Line() {}
    31     Line(Point s, Point t) : s(s), t(t) {}
    32     Vec vec() { return t - s;}
    33     Point point(double x) { return s + (t - s) * x;}
    34 } ;
    35 typedef Line Seg;
    36 double pt2Line(Point x, Point a, Point b) {
    37     Vec v1 = b - a, v2 = x - a;
    38     return crossDet(v1, v2) / vecLen(v1);
    39 }
    40 inline double pt2Line(Point x, Line L) { return pt2Line(x, L.s, L.t);}
    41 
    42 int andrew(Point *pt, int n, Point *ch) {
    43     sort(pt, pt + n);
    44     int m = 0;
    45     for (int i = 0; i < n; i++) {
    46         while (m > 1 && sgn(crossDet(ch[m - 2], ch[m - 1], pt[i])) <= 0) m--;
    47         ch[m++] = pt[i];
    48     }
    49     int k = m;
    50     for (int i = n - 2; i >= 0; i--) {
    51         while (m > k && sgn(crossDet(ch[m - 2], ch[m - 1], pt[i])) <= 0) m--;
    52         ch[m++] = pt[i];
    53     }
    54     if (n > 1) m--;
    55     return m;
    56 }
    57 
    58 const int N = 55555;
    59 const double FINF = 1e20;
    60 Point pt[N], ch[N];
    61 
    62 int main() {
    63 //    freopen("in", "r", stdin);
    64     int n;
    65     while (cin >> n) {
    66         for (int i = 0; i < n; i++) scanf("%lf%lf", &pt[i].x, &pt[i].y);
    67         n = andrew(pt, n, ch);
    68 //        for (int i = 0; i < n; i++) {
    69 //            cout << ch[i].x << ' ' << ch[i].y << endl;
    70 //        }
    71         double maxArea = 0.0;
    72         for (int i = 0; i < n; i++) {
    73             for (int j = i + 1; j < n; j++) {
    74                 for (int k = j + 1; k < n; k++) {
    75                     maxArea = max(maxArea, fabs(crossDet(ch[i], ch[j], ch[k])) / 2.0);
    76                 }
    77             }
    78         }
    79         printf("%.2f\n", maxArea);
    80     }
    81     return 0;
    82 }
    View Code

      还有一种做法,就是O(n+m^2)求对踵点的方法。每次枚举其中一条边,然后扫描求出对踵点,移动一条边的一个端点,同时继续搜索对踵点。这里对于每一条新的边,对踵点都是继续往下一个点移动。这样子,对于每个确定的端点都是只需要访问O(m)个对踵点。这样的操作共有m次,所以这里的复杂度是O(m^2)。代码如下:

      1 #include <cstdio>
      2 #include <cstring>
      3 #include <cmath>
      4 #include <algorithm>
      5 #include <iostream>
      6 
      7 using namespace std;
      8 
      9 const double EPS = 1e-8;
     10 inline int sgn(double x) { return (x > EPS) - (x < -EPS);}
     11 struct Point {
     12     double x, y;
     13     Point() {}
     14     Point(double x, double y) : x(x), y(y) {}
     15     bool operator < (Point a) const { return sgn(x - a.x) < 0 || sgn(x - a.x) == 0 && y < a.y;}
     16     bool operator == (Point a) const { return sgn(x - a.x) == 0 && sgn(y - a.y) == 0;}
     17     Point operator + (Point a) const { return Point(x + a.x, y + a.y);}
     18     Point operator - (Point a) const { return Point(x - a.x, y - a.y);}
     19     Point operator * (double p) const { return Point(x * p, y * p);}
     20     Point operator / (double p) const { return Point(x / p, y / p);}
     21 } ;
     22 typedef Point Vec;
     23 inline double crossDet(Point a, Point b) { return a.x * b.y - a.y * b.x;}
     24 inline double crossDet(Point o, Point a, Point b) { return crossDet(a - o, b - o);}
     25 inline double dotDet(Point a, Point b) { return a.x * b.x + a.y * b.y;}
     26 inline double vecLen(Vec x) { return sqrt(dotDet(x, x));}
     27 
     28 struct Line {
     29     Point s, t;
     30     Line() {}
     31     Line(Point s, Point t) : s(s), t(t) {}
     32     Vec vec() { return t - s;}
     33     Point point(double x) { return s + (t - s) * x;}
     34 } ;
     35 typedef Line Seg;
     36 double pt2Line(Point x, Point a, Point b) {
     37     Vec v1 = b - a, v2 = x - a;
     38     return crossDet(v1, v2) / vecLen(v1);
     39 }
     40 inline double pt2Line(Point x, Line L) { return pt2Line(x, L.s, L.t);}
     41 
     42 int andrew(Point *pt, int n, Point *ch) {
     43     sort(pt, pt + n);
     44     int m = 0;
     45     for (int i = 0; i < n; i++) {
     46         while (m > 1 && sgn(crossDet(ch[m - 2], ch[m - 1], pt[i])) <= 0) m--;
     47         ch[m++] = pt[i];
     48     }
     49     int k = m;
     50     for (int i = n - 2; i >= 0; i--) {
     51         while (m > k && sgn(crossDet(ch[m - 2], ch[m - 1], pt[i])) <= 0) m--;
     52         ch[m++] = pt[i];
     53     }
     54     if (n > 1) m--;
     55     return m;
     56 }
     57 
     58 const int N = 55555;
     59 const double FINF = 1e20;
     60 Point pt[N], ch[N];
     61 
     62 int main() {
     63 //    freopen("in", "r", stdin);
     64     int n;
     65     while (cin >> n) {
     66         for (int i = 0; i < n; i++) scanf("%lf%lf", &pt[i].x, &pt[i].y);
     67         n = andrew(pt, n, ch);
     68         ch[n] = ch[0];
     69 //        for (int i = 0; i < n; i++) {
     70 //            cout << ch[i].x << ' ' << ch[i].y << endl;
     71 //        }
     72         double maxArea = 0.0;
     73         for (int i = 0; i < n; i++) {
     74             int mk = i;
     75             double last = 0.0, cur = fabs(pt2Line(ch[mk], ch[i], ch[i + 1]));
     76             while (true) {
     77                 if (sgn(last - cur) > 0) break;
     78                 last = cur;
     79                 mk = (mk + 1) % n;
     80                 cur = pt2Line(ch[mk], ch[i], ch[i + 1]);
     81             }
     82             mk = (mk + n - 1) % n;
     83             maxArea = max(maxArea, fabs(crossDet(ch[mk], ch[i], ch[i + 1])) / 2.0);
     84             for (int j = 2; j < n - 1; j++) {
     85                 int k = (i + j) % n;
     86                 last = 0.0, cur = fabs(pt2Line(ch[mk], ch[i], ch[k]));
     87                 while (true) {
     88                     if (sgn(last - cur) > 0) break;
     89                     last = cur;
     90                     mk = (mk + 1) % n;
     91                     cur = pt2Line(ch[mk], ch[i], ch[k]);
     92                 }
     93                 mk = (mk + n - 1) % n;
     94                 maxArea = max(maxArea, fabs(crossDet(ch[mk], ch[i], ch[k])) / 2.0);
     95             }
     96         }
     97         printf("%.2f\n", maxArea);
     98     }
     99     return 0;
    100 }
    View Code

      对于最特殊的情况,也就是有50000个点在凸包上的算法暂时没有想到。

    ——written by Lyon

  • 相关阅读:
    python操作pymysql
    使用raise语句抛出异常
    异常处理
    01.正太分布模型
    常用正则表达式总结(47条)
    Scrapy项目_苏宁图书信息
    Scrapy项目_阳光热线问政平台
    Scrapy 项目:腾讯招聘
    Python爬虫_糗事百科
    Python爬虫_百度贴吧(title、url、image_url)
  • 原文地址:https://www.cnblogs.com/LyonLys/p/hdu_2202_Lyon.html
Copyright © 2011-2022 走看看