zoukankan      html  css  js  c++  java
  • ZOJ1655 Transport Goods 最短路

    该题又是一个牵涉到节点之间关系通过乘法建立的关系,通过求对数将关系由乘法变为加法应该是可以的。可惜无法无法AC。改为直接相乘却过了。

    AC代码:

    #include <iostream>
    #include <cmath>
    #include <cstdlib> 
    #include <cstdio>
    #include <algorithm> 
    #include <cstring>
    #include <queue>
    #include <iomanip>
    using namespace std;
    
    /*
        一个网络的运送问题,简化之后就是一个最短路问题
        需要计算从N点出发到各个点的最大保有率 
    */
    
    const int MaxN = 105;
    const int NONE = 2;
    
    int N, M, trans[MaxN];
    double Map[MaxN][MaxN];
    bool vis[MaxN];
    double rate[MaxN];
    
    void spfa(int N) {
        memset(vis, 0, sizeof (vis));
        // 初始化到N点的保有率为无意义态,这个无意义态必须要求和可能出现的状态不相冲突
        for (int i = 1; i <= N; ++i) {
            rate[i] = NONE;
        }
        rate[N] = 1.0;
        queue<int>q;
        q.push(N);
        vis[N] = true;
        while (!q.empty()) {
            int v = q.front();
            vis[v] = false;
            q.pop();
            for (int i = 1; i <= N; ++i) {
                if (Map[v][i] != NONE) {    // 如果有边的话
                    if (rate[i] == NONE) {  // 如果未被更新
                        rate[i] = rate[v] * Map[v][i];
                        q.push(i);
                        vis[i] = true;
                    } else if (rate[v] * Map[v][i] > rate[i]){
                        rate[i] = rate[v] * Map[v][i];
                        if (!vis[i]) {
                            q.push(i);
                            vis[i] = true;
                        }
                    }
                }
            }
        }
    }
    
    int main() {
        while (cin >> N >> M) {
            for (int i = 1; i <= N; ++i) {
                for (int j = 1; j <= N; ++j) {
                    Map[i][j] = NONE; // 1表示两点之间没有路相连
                }    
            }
            for (int i = 1; i < N; ++i) {
                cin >> trans[i]; // 保留各个节点需要运送的量为多少
            }
            int a, b;
            double c;
            for (int i = 0; i < M; ++i) {
                cin >> a >> b >> c;    // 读取边的信息,题目给定的c是一个损失率
                c = 1 - c; // 得到保有率
                if (Map[a][b] == NONE) {
                    Map[a][b] = Map[b][a] = c;
                } else {
                    Map[a][b] = Map[b][a] = max(c, Map[a][b]);
                }
            }
            spfa(N);
            double tot = 0;
            for (int i = 1; i < N; ++i) {
                if (rate[i] != NONE) {
                    tot += trans[i] * rate[i];
                }
            }
            cout.setf(ios::fixed);
            cout << setprecision(2);
            cout << tot << endl;
        }
        return 0;    
    }

    WA代码:

    View Code
    #include <iostream>
    #include <cmath>
    #include <cstdlib> 
    #include <cstdio>
    #include <algorithm> 
    #include <cstring>
    #include <queue>
    #include <iomanip>
    using namespace std;
    
    /*
        一个网络的运送问题,简化之后就是一个最短路问题
        需要计算从N点出发到各个点的最大保有率 
    */
    
    const int MaxN = 105;
    const int NONE = 1;
    
    int N, M, trans[MaxN];
    double Map[MaxN][MaxN];
    bool vis[MaxN];
    double rate[MaxN];
    
    void spfa(int N) {
        memset(vis, 0, sizeof (vis));
        // 初始化到N点的保有率为无意义态,这个无意义态必须要求和可能出现的状态不相冲突
        for (int i = 1; i <= MaxN; ++i) {
            rate[i] = NONE;
        }
        rate[N] = log(1.0);
        queue<int>q;
        q.push(N);
        vis[N] = true;
        while (!q.empty()) {
            int v = q.front();
            vis[v] = false;
            q.pop();
            for (int i = 1; i <= N; ++i) {
                if (Map[v][i] != NONE) {    // 如果有边的话
                    if (rate[i] == NONE) {  // 如果未被更新
                        rate[i] = rate[v] + Map[v][i];
                        q.push(i);
                        vis[i] = true;
                    } else if (rate[v] + Map[v][i] > rate[i]){
                        rate[i] = rate[v] + Map[v][i];
                        if (!vis[i]) {
                            q.push(i);
                            vis[i] = true;
                        }
                    }
                }
            }
        }
    }
    
    int main() {
        while (cin >> N >> M) {
            for (int i = 1; i <= N; ++i) {
                for (int j = 1; j <= N; ++j) {
                    Map[i][j] = NONE; // 1表示两点之间没有路相连
                }    
            }
            for (int i = 1; i < N; ++i) {
                cin >> trans[i]; // 保留各个节点需要运送的量为多少
            }
            int a, b;
            double c;
            for (int i = 0; i < M; ++i) {
                cin >> a >> b >> c;    // 读取边的信息,题目给定的c是一个损失率
                c = 1 - c; // 得到保有率
                if (Map[a][b] == NONE) {
                    Map[a][b] = Map[b][a] = log(c); // 求指数,将概率连乘变为加法
                } else {
                    Map[a][b] = Map[b][a] = max(log(c), Map[a][b]);
                }
            }
            spfa(N);
            double tot = 0;
            for (int i = 1; i < N; ++i) {
                if (rate[i] != NONE) {
                    tot += trans[i] * exp(rate[i]);
                }
            }
            cout.setf(ios::fixed);
            cout << setprecision(2);
            cout << tot << endl;
        }
        return 0;    
    }
  • 相关阅读:
    第五章 条件语句
    第四章 javaScript运算符
    第三章 javaScript数据类型
    看电影学英语十
    英语口语会话十
    看电影学英语九
    英语口语会话九
    英语口语会话八
    看电影学英语八
    Linux command line and shell scripting buble
  • 原文地址:https://www.cnblogs.com/Lyush/p/2942576.html
Copyright © 2011-2022 走看看