分析:将读入的字符转化为数字,直接排个序就可以了。
#include <cstdlib> #include <cstring> #include <cstdio> #include <algorithm> using namespace std; const int N = 500; int seq[N]; int main() { char c; int t = 0, idx = 0; while ((c = getchar()) != EOF) { if (c == '+' || c == ' ') { seq[idx++] = t; t = 0; } else t = t * 10 + c - '0'; } sort(seq, seq+idx); printf("%d", seq[0]); for (int i = 1; i < idx; ++i) printf("+%d", seq[i]); puts(""); return 0; }
分析:模拟即可,大于当前位置直接走,否则绕一圈后走到目标位置。
#include <cstdlib> #include <cstring> #include <cstdio> #include <algorithm> using namespace std; typedef long long LL; int n, m; int main() { while (scanf("%d %d", &n, &m) != EOF) { int last = 1, x; LL ret = 0; while (m--) { scanf("%d", &x); if (x >= last) { ret += x - last; last = x; } else { ret += n-last+x; last = x; } } printf("%I64d ", ret); } return 0; }
分析:直接搜索即可,无法证明为何会如此快的找到答案或者退出。
#include <cstdlib> #include <cstdio> #include <cstring> #include <algorithm> using namespace std; const int N = 1005; char str[15]; int m; int path[N]; bool dfs(int p, int left, int right, int last) { if (p == 0) return true; int delta = abs(left-right); for (int i = 1; i <= 10; ++i) { if (last == i) continue; if (str[i] && delta >= 0 && delta < i) { path[p] = i; if (left < right) { if (dfs(p-1, left+i, right, i)) return true; } else if (dfs(p-1, left, right+i, i)) return true; } } return false; } int main() { scanf("%s", str+1); scanf("%d", &m); for (int i = 1; i <= 10; ++i) str[i] -= '0'; if (!dfs(m, 0, 0, 0)) { puts("NO"); } else { puts("YES"); for (int i = m; i > 0; --i) { printf(i == m ? "%d" : " %d", path[i]); } puts(""); } return 0; }
分析:由于每次改变的位置只会改变与其相关位置的变化,对于其余部分的结果可以使用map存储起来,写的时候对log2(x)没有处理好,导致精度误差,教训啊。
#include <cstdlib> #include <cstdio> #include <cstring> #include <algorithm> #include <map> #include <cmath> using namespace std; const int N = (1<<17)+5; int n, m; int seq[N]; int cpy[N]; map<pair<int,int>, int>mp; map<pair<int,int>, int>::iterator it; int cal(int p, int l, int r) { if (r - l == 1) return mp[make_pair(l, r)] = (seq[l] | seq[r]); int mid = (r+l) >> 1; int f = (int)floor(log((r-l+1)*1.0)/log(2.0)+0.5); // 直接除取整会带来精度丢失 if (p <= mid) { if (f & 1) {// or return (mp[make_pair(l, mid)] = cal(p, l, mid)) | mp[make_pair(mid+1, r)]; } else { return (mp[make_pair(l, mid)] = cal(p, l, mid)) ^ mp[make_pair(mid+1, r)]; } } else { if (f & 1) { return mp[make_pair(l, mid)] | (mp[make_pair(mid+1, r)] = cal(p, mid+1, r)); } else { return mp[make_pair(l, mid)] ^ (mp[make_pair(mid+1, r)] = cal(p, mid+1, r)); } } } int main() { scanf("%d %d", &n, &m); int LIM = 1 << n; for (int i = 1; i <= LIM; ++i) { scanf("%d", &seq[i]); cpy[i] = seq[i]; } for (int i = 1, k = 0; i < LIM; i <<= 1, ++k) { for (int j = 1; j+i <= LIM; j += (i<<1)) { if (k & 1) { // xor cpy[j] ^= cpy[j+i]; mp[make_pair(j, j+(i<<1)-1)] = cpy[j]; } else { // or cpy[j] |= cpy[j+i]; mp[make_pair(j, j+(i<<1)-1)] = cpy[j]; } } } int p, b; while (m--) { scanf("%d %d", &p, &b); seq[p] = b; printf("%d ", cal(p, 1, LIM)); } return 0; }