zoukankan      html  css  js  c++  java
  • matplotlib 入门之Sample plots in Matplotlib

    matplotlib教程学习笔记

    这部分给出一些简单的示例。

    Line Plot

    t = np.arange(0.0, 2.0, 0.01)
    s = 1 + np.sin(2 * np.pi * t)
    
    fig, ax = plt.subplots()
    ax.plot(t, s)
    
    ax.set(xlabel='time (s)', ylabel='voltage (mV)',
           title='About as simple as it gets, folks') #设置一些属性
    ax.grid() #显示网格
    
    #fig.savefig("test.png")   保存图片在当前目录下
    plt.show()
    

    image.png

    matplotlib.axes.Axes.plot
    matplotlib.pyplot.plot
    matplotlib.pyplot.subplots
    matplotlib.figure.Figure.savefig

    
    #First create some toy data:
    x = np.linspace(0, 2*np.pi, 400)
    y = np.sin(x**2)
    
    #Creates just a figure and only one subplot
    fig, ax = plt.subplots()
    ax.plot(x, y)
    ax.set_title('Simple plot')
    
    #Creates two subplots and unpacks the output array immediately
    f, (ax1, ax2) = plt.subplots(1, 2, sharey=True)
    ax1.plot(x, y)
    ax1.set_title('Sharing Y axis')
    ax2.scatter(x, y)
    
    
    #Creates four polar axes, and accesses them through the returned array
    fig, axes = plt.subplots(2, 2, subplot_kw=dict(polar=True))
    axes[0, 0].plot(x, y)
    axes[1, 1].scatter(x, y)
    
    #Share a X axis with each column of subplots
    plt.subplots(2, 2, sharex='col')
    
    #Share a Y axis with each row of subplots
    plt.subplots(2, 2, sharey='row')
    
    #Share both X and Y axes with all subplots
    plt.subplots(2, 2, sharex='all', sharey='all')
    
    #Note that this is the same as
    plt.subplots(2, 2, sharex=True, sharey=True)
    
    #Creates figure number 10 with a single subplot
    #and clears it if it already exists.
    fig, ax=plt.subplots(num=10, clear=True)
    

    image.png
    image.png
    image.png
    image.png
    image.png
    image.png
    image.png
    image.png

    One figure, a set of subplots

    
    x1 = np.linspace(0.0, 5.0)
    x2 = np.linspace(0.0, 2.0)
    
    y1 = np.cos(2 * np.pi * x1) * np.exp(-x1)
    y2 = np.cos(2 * np.pi * x2)
    
    plt.subplot(2, 1, 1)
    plt.plot(x1, y1, 'o-')
    plt.title('A tale of 2 subplots')
    plt.ylabel('Damped oscillation')
    
    plt.subplot(2, 1, 2)
    plt.plot(x2, y2, '.-')
    plt.xlabel('time (s)')
    plt.ylabel('Undamped')
    
    plt.show()
    

    这样写也可以达到同样的目的:

    fig, (ax1, ax2) = plt.subplots(2, 1)   # one figure, 2 * 1 axes
    ax1.plot(x1, y1, 'o-')
    ax1.set(title='A tale of 2 subplots',
            ylabel='Damped oscillation')
    
    ax2.plot(x2, y2, '.-')
    ax2.set(**{'xlabel':'times(s)',
               'ylabel':'Undamped'})
    

    均为下图:
    image.png

    Image 展示图片

    imshow()

    import numpy as np
    import matplotlib.cm as cm
    import matplotlib.pyplot as plt
    import matplotlib.cbook as cbook
    from matplotlib.path import Path
    from matplotlib.patches import PathPatch
    

    展示二元正态分布

    delta = 0.025
    x = y = np.arange(-3.0, 3.0, delta)
    X, Y = np.meshgrid(x, y)
    Z1 = np.exp(-X**2 - Y**2)
    Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2)
    Z = (Z1 - Z2) * 2
    
    fig, ax = plt.subplots()
    im = ax.imshow(Z, interpolation='bilinear', cmap=cm.RdYlGn,
                   origin='lower', extent=[-3, 3, -3, 3],
                   vmax=abs(Z).max(), vmin=-abs(Z).max())
    
    plt.show()
    

    np.meshgrid()-千千Sama

    image.png

    A sample image

    # A sample image
    with cbook.get_sample_data('Lenna.png') as image_file:
        image = plt.imread(image_file)
    
    fig, ax = plt.subplots()
    ax.imshow(image)
    ax.axis('off')  # clear x-axis and y-axis
    

    image.png

    Interpolating images 插值图像?

    
    A = np.random.rand(5, 5)
    
    fig, axs = plt.subplots(1, 3, figsize=(10, 3))
    for ax, interp in zip(axs, ['nearest', 'bilinear', 'bicubic']):
        ax.imshow(A, interpolation=interp)
        ax.set_title(interp.capitalize())
        ax.grid(True)
    
    plt.show()
    

    image.png

    x = np.arange(120).reshape((10, 12))
    
    interp = 'bilinear'
    fig, axs = plt.subplots(nrows=2, sharex=True, figsize=(3, 5))
    axs[0].set_title('blue should be up')
    axs[0].imshow(x, origin='upper', interpolation=interp)
    
    axs[1].set_title('blue should be down')
    axs[1].imshow(x, origin='lower', interpolation=interp)
    plt.show()
    

    image.png

    Clip path

    
    delta = 0.025
    x = y = np.arange(-3.0, 3.0, delta)
    X, Y = np.meshgrid(x, y)
    Z1 = np.exp(-X**2 - Y**2)
    Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2)
    Z = (Z1 - Z2) * 2
    
    path = Path([[0, 1], [1, 0], [0, -1], [-1, 0], [0, 1]])
    patch = PathPatch(path, facecolor='none')
    
    fig, ax = plt.subplots()
    ax.add_patch(patch)
    
    im = ax.imshow(Z, interpolation='bilinear', cmap=cm.gray,
                   origin='lower', extent=[-3, 3, -3, 3],
                   clip_path=patch, clip_on=True)
    im.set_clip_path(patch)
    
    plt.show()
    

    image.png

    matplotlib.axes.Axes.imshow
    matplotlib.pyplot.imshow
    matplotlib.artist.Artist.set_clip_path
    matplotlib.patches.PathPatch

    Contouring and Pseudocolor 轮廓与伪彩色

    # make these smaller to increase the resolution
    dx, dy = 0.05, 0.05
    
    # generate 2 2d grids for the x & y bounds
    y, x = np.mgrid[slice(1, 5 + dy, dy),
                    slice(1, 5 + dx, dx)]
    
    z = np.sin(x)**10 + np.cos(10 + y*x) * np.cos(x)
    
    # x and y are bounds, so z should be the value *inside* those bounds.
    # Therefore, remove the last value from the z array.
    z = z[:-1, :-1]
    levels = MaxNLocator(nbins=15).tick_values(z.min(), z.max())
    
    
    # pick the desired colormap, sensible levels, and define a normalization
    # instance which takes data values and translates those into levels.
    cmap = plt.get_cmap('PiYG')
    norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True) #压缩到[0-1],因为颜色的要求?
    
    fig, (ax0, ax1) = plt.subplots(nrows=2)
    
    im = ax0.pcolormesh(x, y, z, cmap=cmap, norm=norm)
    fig.colorbar(im, ax=ax0)  # 添加右边的颜色的标度
    ax0.set_title('pcolormesh with levels')
    
    
    # contours are *point* based plots, so convert our bound into point
    # centers
    cf = ax1.contourf(x[:-1, :-1] + dx/2.,  #在轮廓里面填充颜色?
                      y[:-1, :-1] + dy/2., z, levels=levels,
                      cmap=cmap)
    fig.colorbar(cf, ax=ax1)
    ax1.set_title('contourf with levels')
    
    # adjust spacing between subplots so `ax1` title and `ax0` tick labels
    # don't overlap
    fig.tight_layout()
    
    plt.show()
    

    numpy.mgrid j表示末端数字也包括

    image.png

    matplotlib.axes.Axes.pcolormesh
    matplotlib.pyplot.pcolormesh
    matplotlib.axes.Axes.contourf
    matplotlib.pyplot.contourf
    matplotlib.figure.Figure.colorbar
    matplotlib.pyplot.colorbar
    matplotlib.colors.BoundaryNorm
    matplotlib.ticker.MaxNLocator

    Histograms hist()

    
    np.random.seed(19680801)
    
    # example data
    mu = 100  # mean of distribution
    sigma = 15  # standard deviation of distribution
    x = mu + sigma * np.random.randn(437)#x ~ N(mu, sigma^2)
    
    num_bins = 50 #柱状图数目
    
    fig, ax = plt.subplots()
    
    # the histogram of the data
    n, bins, patches = ax.hist(x, num_bins, density=1)
    #n: 每个bin在图上对应的y轴,这里就是概率密度
    #bins:如果没猜错,是bin所对应的x轴(中间的那个值)
    #patches:应该是画bin所用的一些信息?
    #density:一个可选参数,如果为True,那么bins下的面积和会被调整(scale)为1,这样#就类似一个密度函数了
    
    # add a 'best fit' line
    y = ((1 / (np.sqrt(2 * np.pi) * sigma)) *
         np.exp(-0.5 * (1 / sigma * (bins - mu))**2))
    ax.plot(bins, y, '--')
    ax.set_xlabel('Smarts')
    ax.set_ylabel('Probability density')
    ax.set_title(r'Histogram of IQ: $mu=100$, $sigma=15$')
    
    # Tweak spacing to prevent clipping of ylabel
    fig.tight_layout()
    plt.show()
    

    image.png

    matplotlib.axes.Axes.hist
    matplotlib.axes.Axes.set_title
    matplotlib.axes.Axes.set_xlabel
    matplotlib.axes.Axes.set_ylabel

    Paths

    你可以使用matplotlib.path模块添加任意路径。

    fig, ax = plt.subplots()
    
    Path = mpath.Path  #import matplotlib.path as mpath
    path_data = [
        (Path.MOVETO, (1.58, -2.57)),
        (Path.CURVE4, (0.35, -1.1)),
        (Path.CURVE4, (-1.75, 2.0)),
        (Path.CURVE4, (0.375, 2.0)),
        (Path.LINETO, (0.85, 1.15)),
        (Path.CURVE4, (2.2, 3.2)),
        (Path.CURVE4, (3, 0.05)),
        (Path.CURVE4, (2.0, -0.5)),
        (Path.CLOSEPOLY, (1.58, -2.57)),
        ]
    codes, verts = zip(*path_data)
    #codes:(1, 4, 4, 4, 2, 4, 4, 4, 79) 大概是对应的path的方法,曲线啊,直线啊啥的
    #verts:((1.58, -2.57), (0.35, -1.1), (-1.75, 2.0), (0.375, 2.0), (0.85, 1.15), 
    #(2.2, 3.2), (3, 0.05), (2.0, -0.5), (1.58, -2.57))
    path = mpath.Path(verts, codes)
    patch = mpatches.PathPatch(path, facecolor='r', alpha=0.5)
    ax.add_patch(patch)
    
    # plot control points and connecting lines
    x, y = zip(*path.vertices)
    #x:(1.58, 0.35, -1.75, 0.375, 0.85, 2.2, 3.0, 2.0, 1.58) 
     #y:(-2.57, -1.1, 2.0, 2.0, 1.15, 3.2, 0.05, -0.5, -2.57)
    line, = ax.plot(x, y, 'go-')
    
    ax.grid()
    ax.axis('equal')
    for i, (item1, item2) in enumerate(path_data, 1):
        plt.text(item2[0], item2[1], str(i), size=20)
        
        
    plt.show()
    

    image.png

    zip() ,传入迭代子,讲不同迭代子相同位置的元素“捏”在一起返回一个新的迭代子。注意,视情况,zip不仅可以解压,而且可以反解。
    image.png

    matplotlib.path
    matplotlib.path.Path
    matplotlib.patches
    matplotlib.patches.PathPatch
    matplotlib.axes.Axes.add_patch

    Three-dimensional plotting

    mplot3d 工具包支持3d作图,比如曲面,线框,散点等。

    
    # This import registers the 3D projection, but is otherwise unused.
    from mpl_toolkits.mplot3d import Axes3D  # noqa: F401 unused import
    
    import matplotlib.pyplot as plt
    from matplotlib import cm
    from matplotlib.ticker import LinearLocator, FormatStrFormatter
    import numpy as np
    
    
    fig = plt.figure()
    ax = fig.gca(projection='3d') #.gca() 获取当前的axes,如果有必要(大概是没有?),就创建一个
    #projection 设置工程为3d?
    
    # Make data.
    X = np.arange(-5, 5, 0.25)
    Y = np.arange(-5, 5, 0.25)
    X, Y = np.meshgrid(X, Y) #生成二维坐标点
    R = np.sqrt(X**2 + Y**2)
    Z = np.sin(R)
    
    # Plot the surface.
    surf = ax.plot_surface(X, Y, Z, cmap=cm.coolwarm,
                           linewidth=0, antialiased=False)
    
    # Customize the z axis.
    ax.set_zlim(-1.01, 1.01) #设置z轴标度的表示范围
    ax.zaxis.set_major_locator(LinearLocator(10)) #大概就是将z轴分成10格
    ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))#2位小数
    
    # Add a color bar which maps values to colors.
    fig.colorbar(surf, shrink=0.5, aspect=5) #添加颜色标度
    
    plt.show()
    

    image.png

    Streamplot 流线图?

    streamplot()函数,可以画向量场的流线,还可以。。。

    import numpy as np
    import matplotlib.pyplot as plt
    import matplotlib.gridspec as gridspec
    
    #并没有采用Demo里面的模型,而是选择了:
    #F=(-yi+xj)/(x^2+y^2)^(1/2)
    #缺点是,线宽啥的都体现不出来了(因为速度大小均为1)
    w = 3
    Y, X = np.mgrid[-w:w:100j, -w:w:100j] # 生成10000个[-3, 3] * [-3, 3]的均匀网格坐标
    U = -Y / np.sqrt(X ** 2 + Y ** 2)
    V = X / np.sqrt(X ** 2 + Y ** 2)
    speed = np.sqrt(U*U + V*V)
    print(np.where(speed == np.sqrt(2)))
    
    fig = plt.figure(figsize=(7, 9)) #7行9列
    #应该是把分好的块再重新分了, height_ratios, 从下面的图片中可以看到
    #3行图片的高度比例是1:1:2
    #不出意外,len(height_ratios) == nrows
    gs = gridspec.GridSpec(nrows=3, ncols=2, height_ratios=[1, 1, 2])
    
    
    #  Varying density along a streamline
    ax0 = fig.add_subplot(gs[0, 0])
    ax0.streamplot(X, Y, U, V, density=[0.5, 1])
    ax0.set_title('Varying Density')
    
    #x,y: 位置坐标
    #U, V: x and y-velocities(x轴分速度,y-轴分速度)
    
    # Varying color along a streamline
    ax1 = fig.add_subplot(gs[0, 1])
    strm = ax1.streamplot(X, Y, U, V, color=U, linewidth=2, cmap='autumn') #颜色的区别
    fig.colorbar(strm.lines)
    ax1.set_title('Varying Color')
    
    #  Varying line width along a streamline
    ax2 = fig.add_subplot(gs[1, 0])
    lw = 5*speed / speed.max()
    ax2.streamplot(X, Y, U, V, density=0.6, color='k', linewidth=lw) #不同密度线宽不同
    ax2.set_title('Varying Line Width')
    
    # Controlling the starting points of the streamlines
    seed_points = np.array([[-2, -1, 0, 1, 2, -1], [-2, -1,  0, 1, 2, 2]])
    #与图中蓝色点对应,好像是只有经过上述某点的流线才被保留
    
    ax3 = fig.add_subplot(gs[1, 1])
    strm = ax3.streamplot(X, Y, U, V, color=U, linewidth=2,
                         cmap='autumn', start_points=seed_points.T)
    fig.colorbar(strm.lines)
    ax3.set_title('Controlling Starting Points')
    
    # Displaying the starting points with blue symbols.
    ax3.plot(seed_points[0], seed_points[1], 'bo')
    ax3.axis((-w, w, -w, w))
    
    # Create a mask
    mask = np.zeros(U.shape, dtype=bool)
    mask[40:60, 40:60] = True
    U[:20, :20] = np.nan
    U = np.ma.array(U, mask=mask) #掩码数组
    
    ax4 = fig.add_subplot(gs[2:, :])
    ax4.streamplot(X, Y, U, V, color='r')
    ax4.set_title('Streamplot with Masking')
    
    ax4.imshow(~mask, extent=(-w, w, -w, w), alpha=0.5,
              interpolation='nearest', cmap='gray', aspect='auto')
    ax4.set_aspect('equal')
    
    plt.tight_layout()
    plt.show()
    

    image.png

    matplotlib.axes.Axes.streamplot
    matplotlib.pyplot.streamplot
    matplotlib.gridspec
    matplotlib.gridspec.GridSpec

    Ellipses 椭圆

    
    #这个例子画了很多椭圆
    import matplotlib.pyplot as plt
    import numpy as np
    from matplotlib.patches import Ellipse
    
    NUM = 250 #250个
    
    ells = [Ellipse(xy=np.random.rand(2) * 10, #(x, y) [0,10)
                    width=np.random.rand(), height=np.random.rand(),
                    angle=np.random.rand() * 360)  #看来angle的表示是用度
            for i in range(NUM)]
    
    fig, ax = plt.subplots(subplot_kw={'aspect': 'equal'})
    for e in ells:
        ax.add_artist(e)
        e.set_clip_box(ax.bbox)#
        e.set_alpha(np.random.rand())
        e.set_facecolor(np.random.rand(3)) #rgb?
    
    ax.set_xlim(0, 10)
    ax.set_ylim(0, 10)
    
    plt.show()
    

    image.png

    
    import matplotlib.pyplot as plt
    import numpy as np
    from matplotlib.patches import Ellipse
    
    delta = 45.0  # degrees 每次偏转的角度
    
    angles = np.arange(0, 360 + delta, delta)
    ells = [Ellipse((1, 1), 4, 2, a) for a in angles]
    
    a = plt.subplot(111, aspect='equal')
    
    for e in ells:
        e.set_clip_box(a.bbox)
        e.set_alpha(0.1)
        a.add_artist(e) #和上面的例子进行比较,可以发现,这行代码是绑定
    
    plt.xlim(-2, 4)
    plt.ylim(-1, 3)
    
    plt.show()
    

    matplotlib.patches
    matplotlib.patches.Ellipse
    matplotlib.axes.Axes.add_artist
    matplotlib.artist.Artist.set_clip_box
    matplotlib.artist.Artist.set_alpha
    matplotlib.patches.Patch.set_facecolor

    Bar charts 条形图

    import numpy as np
    import matplotlib.pyplot as plt
    from matplotlib.ticker import MaxNLocator
    from collections import namedtuple
    
    n_groups = 5
    
    means_men = (20, 35, 30, 35, 27)
    std_men = (2, 3, 4, 1, 2)
    
    means_women = (25, 32, 34, 20, 25)
    std_women = (3, 5, 2, 3, 3)
    
    fig, ax = plt.subplots()
    
    index = np.arange(n_groups)
    bar_width = 0.35 #条宽
    
    opacity = 0.4 #不透明度
    error_config = {'ecolor': '#0000FF'} #设置误差的一些属性
    error_config2 = {'ecolor': '#00FF00'}
    
    rects1 = ax.bar(index, means_men, bar_width,
                    alpha=opacity, color='b',
                    yerr=std_men, error_kw=error_config, #有yerr才会有那个一竖
                    label='Men')
    
    rects2 = ax.bar(index + bar_width, means_women, bar_width,
                    alpha=opacity, color='r',
                    yerr=std_women, error_kw=error_config2,
                    label='Women')
    
    ax.set_xlabel('Group')
    ax.set_ylabel('Scores')
    ax.set_title('Scores by group and gender')
    ax.set_xticks(index + bar_width / 2)
    ax.set_xticklabels(('A', 'B', 'C', 'D', 'E')) #设置x轴标签
    ax.legend()
    
    fig.tight_layout()
    plt.show()
    

    image.png

    
    
    # Credit: Josh Hemann
    
    import numpy as np
    import matplotlib.pyplot as plt
    from matplotlib.ticker import MaxNLocator
    from collections import namedtuple
    
    
    Student = namedtuple('Student', ['name', 'grade', 'gender']) #利用name来存取的tuple
    Score = namedtuple('Score', ['score', 'percentile'])
    
    # GLOBAL CONSTANTS
    testNames = ['Pacer Test', 'Flexed Arm
     Hang', 'Mile Run', 'Agility',
                 'Push Ups']  #测试项目的名称
    testMeta = dict(zip(testNames, ['laps', 'sec', 'min:sec', 'sec', ''])) #项目与单位匹配
    
    
    def attach_ordinal(num):
        """helper function to add ordinal string to integers
    
        1 -> 1st
        56 -> 56th
        """
        suffixes = {str(i): v
                    for i, v in enumerate(['th', 'st', 'nd', 'rd', 'th',
                                           'th', 'th', 'th', 'th', 'th'])} #名次缩写的匹配
    
        v = str(num)
        # special case early teens
        if v in {'11', '12', '13'}:
            return v + 'th' #特殊情况
        return v + suffixes[v[-1]] #普通情况依照最后一位数字分配缩写
    
    
    def format_score(scr, test):
        """
        Build up the score labels for the right Y-axis by first
        appending a carriage return to each string and then tacking on
        the appropriate meta information (i.e., 'laps' vs 'seconds'). We
        want the labels centered on the ticks, so if there is no meta
        info (like for pushups) then don't add the carriage return to
        the string
        """
        md = testMeta[test] #获取对应的单位
        if md:
            return '{0}
    {1}'.format(scr, md)  
        else:
            return scr
    
    
    def format_ycursor(y):
        y = int(y)
        if y < 0 or y >= len(testNames):
            return ''
        else:
            return testNames[y]
    
    
    def plot_student_results(student, scores, cohort_size):
        #  create the figure
        fig, ax1 = plt.subplots(figsize=(9, 7))
        fig.subplots_adjust(left=0.115, right=0.88)
        fig.canvas.set_window_title('Eldorado K-8 Fitness Chart')
    
        pos = np.arange(len(testNames))
    
        rects = ax1.barh(pos, [scores[k].percentile for k in testNames],
                         align='center',
                         height=0.5, color='m', #height 就是bar的高(用宽可能更加贴切)占的百分比
                         tick_label=testNames)
    
        ax1.set_title(student.name)
    
        ax1.set_xlim([0, 100]) #设置x轴的范围
        ax1.xaxis.set_major_locator(MaxNLocator(11)) #MaxNLocator:就是x轴最多的标度数目为11
        ax1.xaxis.grid(True, linestyle='--', which='major', #which???
                       color='grey', alpha=.25)
    
        # Plot a solid vertical gridline to highlight the median position
        ax1.axvline(50, color='grey', alpha=0.25) #画一条实线,在50坐标处
        # set X-axis tick marks at the deciles
        cohort_label = ax1.text(.5, -.07, 'Cohort Size: {0}'.format(cohort_size),
                                horizontalalignment='center', size='small',
                                transform=ax1.transAxes)
    
        # Set the right-hand Y-axis ticks and labels
        ax2 = ax1.twinx() #twinx, 拥有同一个x?
    
        scoreLabels = [format_score(scores[k].score, k) for k in testNames]
    
        # set the tick locations
        ax2.set_yticks(pos)
        # make sure that the limits are set equally on both yaxis so the
        # ticks line up
        ax2.set_ylim(ax1.get_ylim()) #ax2设置为同ax1一样的y的范围
    
        # set the tick labels
        ax2.set_yticklabels(scoreLabels)
    
        ax2.set_ylabel('Test Scores')
    
        ax2.set_xlabel(('Percentile Ranking Across '
                        '{grade} Grade {gender}s').format(
                            grade=attach_ordinal(student.grade),
                            gender=student.gender.title()))
    
        rect_labels = []
        # Lastly, write in the ranking inside each bar to aid in interpretation
        for rect in rects: #rect 条 每个bar
            # Rectangle widths are already integer-valued but are floating
            # type, so it helps to remove the trailing decimal point and 0 by
            # converting width to int type
            width = int(rect.get_width())
    
            rankStr = attach_ordinal(width)
            # The bars aren't wide enough to print the ranking inside
            if width < 5: #如果bar的宽度(可能叫长度更为贴切)不够容纳排名,那么就写在右边
                # Shift the text to the right side of the right edge
                xloc = width + 1
                # Black against white background
                clr = 'black'
                align = 'left'#应该是指,xloc是文本的左贴边
            else:
                # Shift the text to the left side of the right edge
                xloc = 0.98*width
                # White on magenta
                clr = 'white'
                align = 'right'
    
            # Center the text vertically in the bar
            yloc = rect.get_y() + rect.get_height()/2.0 #居中显示
            label = ax1.text(xloc, yloc, rankStr, horizontalalignment=align,
                             verticalalignment='center', color=clr, weight='bold',
                             clip_on=True)
            rect_labels.append(label)
    
        # make the interactive mouse over give the bar title
        ax2.fmt_ydata = format_ycursor #这个交互信息,从图片没法直接体现
        # return all of the artists created
        return {'fig': fig,
                'ax': ax1,
                'ax_right': ax2,
                'bars': rects,
                'perc_labels': rect_labels,
                'cohort_label': cohort_label}
    
    student = Student('Johnny Doe', 2, 'boy')
    scores = dict(zip(testNames,
                      (Score(v, p) for v, p in
                       zip(['7', '48', '12:52', '17', '14'],
                           np.round(np.random.uniform(0, 1,
                                                      len(testNames))*100, 0)))))
    cohort_size = 62  # The number of other 2nd grade boys
    
    arts = plot_student_results(student, scores, cohort_size)
    plt.show()
    

    image.png

    Pie charts 饼图

    本节的例子同时对下面的功能进行了展式:

    • 切片标签
    • 自动标记百分比
    • 用“爆炸”来偏移切片
    • 下拉阴影
    • 自定义起始角度
    
    import matplotlib.pyplot as plt
    
    # Pie chart, where the slices will be ordered and plotted counter-clockwise:
    labels = 'Frogs', 'Hogs', 'Dogs', 'Logs'
    sizes = [15, 30, 43, 10] #sum == 98 not 100
    explode = (0, 0.1, 0, 0)  # only "explode" the 2nd slice (i.e. 'Hogs') hogs被孤立了
    
    fig1, ax1 = plt.subplots()
    ax1.pie(sizes, explode=explode, labels=labels, autopct='%1.1f%%',
            shadow=True, startangle=90) #startangle :起始角度
    ax1.axis('equal')  # Equal aspect ratio ensures that pie is drawn as a circle.
    
    plt.show()
    

    image.png

    matplotlib.axes.Axes.pie
    matplotlib.pyplot.pie

    Tables

    import numpy as np
    import matplotlib.pyplot as plt
    
    
    data = [[ 66386, 174296,  75131, 577908,  32015],
            [ 58230, 381139,  78045,  99308, 160454],
            [ 89135,  80552, 152558, 497981, 603535],
            [ 78415,  81858, 150656, 193263,  69638],
            [139361, 331509, 343164, 781380,  52269]]
    
    columns = ('Freeze', 'Wind', 'Flood', 'Quake', 'Hail')
    rows = ['%d year' % x for x in (100, 50, 20, 10, 5)]
    
    values = np.arange(0, 2500, 500)
    value_increment = 1000
    
    # Get some pastel shades for the colors
    colors = plt.cm.BuPu(np.linspace(0, 0.5, len(rows)))#colormap?
    n_rows = len(data)
    
    index = np.arange(len(columns)) + 0.3
    bar_width = 0.4
    
    # Initialize the vertical-offset for the stacked bar chart.
    y_offset = np.zeros(len(columns))
    
    # Plot bars and create text labels for the table
    cell_text = []
    for row in range(n_rows):
        plt.bar(index, data[row], bar_width, bottom=y_offset, color=colors[row]) #bottom!!!!!!!!!!!!!
        y_offset = y_offset + data[row]
        cell_text.append(['%1.1f' % (x / 1000.0) for x in y_offset]) #记录下每层的数据
    # Reverse colors and text labels to display the last value at the top.
    colors = colors[::-1]
    cell_text.reverse()
    
    # Add a table at the bottom of the axes
    the_table = plt.table(cellText=cell_text, #在图片下方加一个表格
                          rowLabels=rows,
                          rowColours=colors,
                          colLabels=columns,
                          loc='bottom')#loc location 位置
    
    # Adjust layout to make room for the table:
    plt.subplots_adjust(left=0.2, bottom=0.2)
    
    plt.ylabel("Loss in ${0}'s".format(value_increment))
    plt.yticks(values * value_increment, ['%d' % val for val in values])
    plt.xticks([])
    plt.title('Loss by Disaster')
    
    plt.show()
    

    image.png

    Scatter plots 散点图

    下面代码我并没有执行,图片是直接照搬的。

    
    import numpy as np
    import matplotlib.pyplot as plt
    import matplotlib.cbook as cbook
    
    # Load a numpy record array from yahoo csv data with fields date, open, close,
    # volume, adj_close from the mpl-data/example directory. The record array
    # stores the date as an np.datetime64 with a day unit ('D') in the date column.
    with cbook.get_sample_data('goog.npz') as datafile:
        price_data = np.load(datafile)['price_data'].view(np.recarray)
    price_data = price_data[-250:]  # get the most recent 250 trading days
    
    delta1 = np.diff(price_data.adj_close) / price_data.adj_close[:-1]
    
    # Marker size in units of points^2
    volume = (15 * price_data.volume[:-2] / price_data.volume[0])**2
    close = 0.003 * price_data.close[:-2] / 0.003 * price_data.open[:-2]
    
    fig, ax = plt.subplots()
    ax.scatter(delta1[:-1], delta1[1:], c=close, s=volume, alpha=0.5)
    
    ax.set_xlabel(r'$Delta_i$', fontsize=15)
    ax.set_ylabel(r'$Delta_{i+1}$', fontsize=15)
    ax.set_title('Volume and percent change')
    
    ax.grid(True)
    fig.tight_layout()
    
    plt.show()
    

    image.png

    GUI widgets

    
    import numpy as np
    import matplotlib.pyplot as plt
    from matplotlib.widgets import Slider, Button, RadioButtons
    
    fig, ax = plt.subplots()
    plt.subplots_adjust(left=0.25, bottom=0.25) #左边右边都留点空
    t = np.arange(0.0, 1.0, 0.001)
    a0 = 5 #幅度
    f0 = 3 #频率相关
    delta_f = 5.0 #频率的幅度吧
    s = a0*np.sin(2*np.pi*f0*t)
    l, = plt.plot(t, s, lw=2, color='red')
    plt.axis([0, 1, -10, 10])   # 设置axis的范围  x:[0, 1], y:[-10, 10]
    
    axcolor = 'lightgoldenrodyellow'  #调整框的颜色
    axfreq = plt.axes([0.25, 0.3, 0.65, 0.03], facecolor=axcolor)  #[left, bottom, length, height]
    axamp = plt.axes([0.25, 0.15, 0.65, 0.03], facecolor=axcolor)
    
    sfreq = Slider(axfreq, 'Freq', 0.1, 30.0, valinit=f0, valstep=delta_f) #valstep?
    samp = Slider(axamp, 'Amp', 0.1, 10.0, valinit=a0)
    
    
    def update(val):
        amp = samp.val #获取调节后的amp  幅度
        freq = sfreq.val  #获取调节后的 freq  频率
        l.set_ydata(amp*np.sin(2*np.pi*freq*t))  #画新的图
        fig.canvas.draw_idle()   #???
    sfreq.on_changed(update)   #绑定更新函数
    samp.on_changed(update)
    
    resetax = plt.axes([0.8, 0.025, 0.1, 0.04])
    #设定button reset的一些属性
    button = Button(resetax, 'Reset', color=axcolor, hovercolor='0.975')
    
    
    def reset(event):
        sfreq.reset()
        samp.reset()
    button.on_clicked(reset) #button reset点击动作绑定reset
    
    rax = plt.axes([0.025, 0.5, 0.15, 0.15], facecolor=axcolor)
    radio = RadioButtons(rax, ('red', 'blue', 'green'), active=0)  # 倒是有点像网页 选择按钮
    
    
    def colorfunc(label):   #改变曲线颜色
        l.set_color(label)
        fig.canvas.draw_idle()
    radio.on_clicked(colorfunc)  #绑定colorfunc到选择按钮
    
    plt.show()
    

    image.png

    matplotlib.pyplot.axes
    matplotlib.widgets

    Filled curves 填充曲线?

    import numpy as np
    import matplotlib.pyplot as plt
    
    x = [0, 1, 2, 1]
    y = [1, 2, 1, 0]
    
    fig, ax = plt.subplots()
    ax.fill(x, y)
    plt.show()
    

    image.png

    下面的例子要稍微复杂一些,涉及多条曲线,设置填充颜色,设置透明度等。

    import numpy as np
    import matplotlib.pyplot as plt
    
    
    x = np.linspace(0, 1.5 * np.pi, 500)
    y1 = np.sin(x)
    y2 = np.sin(3 * x)
    
    fig, ax = plt.subplots()
    
    ax.fill(x, y1, 'b', x, y2, 'r', alpha=0.3)
    
    # Outline of the region we've filled in
    ax.plot(x, y1, c='b', alpha=0.8)
    ax.plot(x, y2, c='r', alpha=0.8)
    ax.plot([x[0], x[-1]], [y1[0], y1[-1]], c='b', alpha=0.8)
    ax.plot([x[0], x[-1]], [y2[0], y2[-1]], c='r', alpha=0.8)
    
    plt.show()
    

    image.png

    matplotlib.pyplot.fill

    Date handling 处理时间(序列?)

    下面代码并没有跑,只是照搬

    import numpy as np
    import matplotlib.pyplot as plt
    import matplotlib.dates as mdates
    import matplotlib.cbook as cbook
    
    years = mdates.YearLocator()   # every year
    months = mdates.MonthLocator()  # every month
    yearsFmt = mdates.DateFormatter('%Y')
    
    # Load a numpy record array from yahoo csv data with fields date, open, close,
    # volume, adj_close from the mpl-data/example directory. The record array
    # stores the date as an np.datetime64 with a day unit ('D') in the date column.
    with cbook.get_sample_data('goog.npz') as datafile:
        r = np.load(datafile)['price_data'].view(np.recarray)
    
    fig, ax = plt.subplots()
    ax.plot(r.date, r.adj_close)
    
    # format the ticks
    ax.xaxis.set_major_locator(years)
    ax.xaxis.set_major_formatter(yearsFmt)
    ax.xaxis.set_minor_locator(months)
    
    # round to nearest years...
    datemin = np.datetime64(r.date[0], 'Y')
    datemax = np.datetime64(r.date[-1], 'Y') + np.timedelta64(1, 'Y')
    ax.set_xlim(datemin, datemax)
    
    
    # format the coords message box
    def price(x):
        return '$%1.2f' % x
    ax.format_xdata = mdates.DateFormatter('%Y-%m-%d')
    ax.format_ydata = price
    ax.grid(True)
    
    # rotates and right aligns the x labels, and moves the bottom of the
    # axes up to make room for them
    fig.autofmt_xdate()
    
    plt.show()
    

    image.png

    Log plots

    
    
    import numpy as np
    import matplotlib.pyplot as plt
    
    # Data for plotting
    t = np.arange(0.01, 20.0, 0.01)
    
    # Create figure
    fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2)
    
    # log y axis
    ax1.semilogy(t, np.exp(-t / 5.0))
    ax1.set(title='semilogy')
    ax1.grid()
    
    # log x axis
    ax2.semilogx(t, np.sin(2 * np.pi * t))
    ax2.set(title='semilogx')
    ax2.grid()
    
    # log x and y axis
    ax3.loglog(t, 20 * np.exp(-t / 10.0), basex=2)
    ax3.set(title='loglog base 2 on x')
    ax3.grid()
    
    # With errorbars: clip non-positive values
    # Use new data for plotting
    x = 10.0**np.linspace(0.0, 2.0, 20)
    y = x**2.0
    
    ax4.set_xscale("log", nonposx='clip')
    ax4.set_yscale("log", nonposy='clip')
    ax4.set(title='Errorbars go negative')
    ax4.errorbar(x, y, xerr=0.1 * x, yerr=5.0 + 0.75 * y)
    # ylim must be set after errorbar to allow errorbar to autoscale limits
    ax4.set_ylim(bottom=0.1)
    
    fig.tight_layout()
    plt.show()
    

    image.png

    matplotlib.axes. Axes.semilogx
    matplotlib.axes. Axes.semilogy

    Polar plots 极坐标

    
    import numpy as np
    import matplotlib.pyplot as plt
    
    
    r = np.arange(0, 2, 0.01)
    theta = 2 * np.pi * r #看来采用的是弧度制
    
    ax = plt.subplot(111, projection='polar')
    ax.plot(theta, r)
    ax.set_rmax(2) #数字大了 整体会缩小?明白了,rmax就是极坐标最大半径,最大半径设置得越大,相应得原本的内容就显得越小。
    ax.set_rticks([0.5, 1, 1.5, 2])  # Less radial ticks
    ax.set_rlabel_position(-12.5)  # 0.5 1 1.5 2位于-12.5度处
    ax.grid(True)
    
    ax.set_title("A line plot on a polar axis", va='bottom')
    plt.show()
    

    image.png

    matplotlib.axes.Axes.plot
    matplotlib.projections.polar
    matplotlib.projections.polar.PolarAxes
    matplotlib.projections.polar.PolarAxes.set_rticks
    matplotlib.projections.polar.PolarAxes.set_rmax
    matplotlib.projections.polar.PolarAxes.set_rlabel_position

    Legends 图例

    import numpy as np
    import matplotlib.pyplot as plt
    
    # Make some fake data.
    a = b = np.arange(0, 3, .02)
    c = np.exp(a)
    d = c[::-1]
    
    # Create plots with pre-defined labels.
    fig, ax = plt.subplots()
    ax.plot(a, c, 'k--', label='Model length')
    ax.plot(a, d, 'k:', label='Data length')
    ax.plot(a, c + d, 'k', label='Total message length')
    
    legend = ax.legend(loc='upper center', shadow=True, fontsize='x-large')
    #loc: location best:0, upper right:1 upper left:2 ...
    #shadow 是否添加阴影
    #fontsize  字体大小
    # xx-small, x-small, small, medium, large, x-large, xx-large, larger, smaller, None
    #或者,数字 fontsize=15
    
    # Put a nicer background color on the legend.
    legend.get_frame().set_facecolor('C0')
    
    plt.show()
    

    image.png

    matplotlib.axes.Axes.plot
    matplotlib.pyplot.plot
    matplotlib.axes.Axes.legend
    matplotlib.pyplot.legend

    TeX-notation for text objects

    
    
    import matplotlib.pyplot as plt
    import subprocess
    import sys
    import re
    
    # Selection of features following "Writing mathematical expressions" tutorial
    mathtext_titles = {
        0: "Header demo",
        1: "Subscripts and superscripts",
        2: "Fractions, binomials and stacked numbers",
        3: "Radicals",
        4: "Fonts",
        5: "Accents",
        6: "Greek, Hebrew",
        7: "Delimiters, functions and Symbols"}
    n_lines = len(mathtext_titles)
    
    # Randomly picked examples
    mathext_demos = {
        0: r"$W^{3eta}_{delta_1 
    ho_1 sigma_2} = "
        r"U^{3eta}_{delta_1 
    ho_1} + frac{1}{8 pi 2} "
        r"int^{alpha_2}_{alpha_2} d alpha^prime_2 left[frac{ "
        r"U^{2eta}_{delta_1 
    ho_1} - alpha^prime_2U^{1eta}_"
        r"{
    ho_1 sigma_2} }{U^{0eta}_{
    ho_1 sigma_2}}
    ight]$",
    
        1: r"$alpha_i > eta_i, "
        r"alpha_{i+1}^j = {
    m sin}(2pi f_j t_i) e^{-5 t_i/	au}, "
        r"ldots$",
    
        2: r"$frac{3}{4}, inom{3}{4}, stackrel{3}{4}, "
        r"left(frac{5 - frac{1}{x}}{4}
    ight), ldots$",
    
        3: r"$sqrt{2}, sqrt[3]{x}, ldots$",
    
        4: r"$mathrm{Roman} ,  mathit{Italic} ,  mathtt{Typewriter}  "
        r"mathrm{or} mathcal{CALLIGRAPHY}$",
    
        5: r"$acute a, ar a, reve a, dot a, ddot a,  grave a,  "
        r"hat a, 	ilde a, vec a, widehat{xyz}, widetilde{xyz}, "
        r"ldots$",
    
        6: r"$alpha, eta, chi, delta, lambda, mu, "
        r"Delta, Gamma, Omega, Phi, Pi, Upsilon, 
    abla, "
        r"aleph, eth, daleth, gimel, ldots$",
    
        7: r"$coprod, int, oint, prod, sum, "
        r"log, sin, approx, oplus, star, varpropto, "
        r"infty, partial, Re, leftrightsquigarrow,  ldots$"}
    
    
    def doall():
        # Colors used in mpl online documentation.
        mpl_blue_rvb = (191. / 255., 209. / 256., 212. / 255.)
        mpl_orange_rvb = (202. / 255., 121. / 256., 0. / 255.)
        mpl_grey_rvb = (51. / 255., 51. / 255., 51. / 255.)
    
        # Creating figure and axis.
        plt.figure(figsize=(6, 7))
        plt.axes([0.01, 0.01, 0.98, 0.90], facecolor="white", frameon=True)
        plt.gca().set_xlim(0., 1.)
        plt.gca().set_ylim(0., 1.)
        plt.gca().set_title("Matplotlib's math rendering engine",
                            color=mpl_grey_rvb, fontsize=14, weight='bold')
        plt.gca().set_xticklabels("", visible=False)
        plt.gca().set_yticklabels("", visible=False)
    
        # Gap between lines in axes coords
        line_axesfrac = (1. / (n_lines))
    
        # Plotting header demonstration formula
        full_demo = mathext_demos[0]
        plt.annotate(full_demo,
                     xy=(0.5, 1. - 0.59 * line_axesfrac),
                     xycoords='data', color=mpl_orange_rvb, ha='center',
                     fontsize=20)
    
        # Plotting features demonstration formulae
        for i_line in range(1, n_lines):
            baseline = 1 - (i_line) * line_axesfrac
            baseline_next = baseline - line_axesfrac
            title = mathtext_titles[i_line] + ":"
            fill_color = ['white', mpl_blue_rvb][i_line % 2]
            plt.fill_between([0., 1.], [baseline, baseline],
                             [baseline_next, baseline_next],
                             color=fill_color, alpha=0.5)
            plt.annotate(title,
                         xy=(0.07, baseline - 0.3 * line_axesfrac),
                         xycoords='data', color=mpl_grey_rvb, weight='bold')
            demo = mathext_demos[i_line]
            plt.annotate(demo,
                         xy=(0.05, baseline - 0.75 * line_axesfrac),
                         xycoords='data', color=mpl_grey_rvb,
                         fontsize=16)
    
        for i in range(n_lines):
            s = mathext_demos[i]
            print(i, s)
        plt.show()
    
    
    if '--latex' in sys.argv:
        # Run: python mathtext_examples.py --latex
        # Need amsmath and amssymb packages.
        fd = open("mathtext_examples.ltx", "w")
        fd.write("\documentclass{article}
    ")
        fd.write("\usepackage{amsmath, amssymb}
    ")
        fd.write("\begin{document}
    ")
        fd.write("\begin{enumerate}
    ")
    
        for i in range(n_lines):
            s = mathext_demos[i]
            s = re.sub(r"(?<!\)$", "$$", s)
            fd.write("\item %s
    " % s)
    
        fd.write("\end{enumerate}
    ")
        fd.write("\end{document}
    ")
        fd.close()
    
        subprocess.call(["pdflatex", "mathtext_examples.ltx"])
    else:
        doall()
    
    

    image.png

    Native TeX rendering

    不晓得,为啥使用原始的TeX,我的程序会挂,不过,matplotlib提供的已经足够了吧。下面的直接照搬了。

    import numpy as np
    import matplotlib
    matplotlib.rcParams['text.usetex'] = True
    import matplotlib.pyplot as plt
    
    
    t = np.linspace(0.0, 1.0, 100)
    s = np.cos(4 * np.pi * t) + 2
    
    fig, ax = plt.subplots(figsize=(6, 4), tight_layout=True)
    ax.plot(t, s)
    
    ax.set_xlabel(r'	extbf{time (s)}')
    ax.set_ylabel('\textit{Velocity (N{DEGREE SIGN}/sec)}', fontsize=16)
    ax.set_title(r'TeX is Number $displaystylesum_{n=1}^infty'
                 r'frac{-e^{ipi}}{2^n}$!', fontsize=16, color='r')
    plt.show()
    

    image.png

    EEG GUI

    你可以把matplotlib嵌入到pygtk,wx,Tk或者Qt应用中。
    这部分姑且先跳过吧。

    import tkinter
    
    from matplotlib.backends.backend_tkagg import (
        FigureCanvasTkAgg, NavigationToolbar2Tk)
    # Implement the default Matplotlib key bindings.
    from matplotlib.backend_bases import key_press_handler
    from matplotlib.figure import Figure
    
    import numpy as np
    
    
    root = tkinter.Tk()
    root.wm_title("Embedding in Tk")
    
    fig = Figure(figsize=(5, 4), dpi=100)
    t = np.arange(0, 3, .01)
    fig.add_subplot(111).plot(t, 2 * np.sin(2 * np.pi * t))
    
    canvas = FigureCanvasTkAgg(fig, master=root)  # A tk.DrawingArea.
    canvas.draw()
    canvas.get_tk_widget().pack(side=tkinter.TOP, fill=tkinter.BOTH, expand=1)
    
    toolbar = NavigationToolbar2Tk(canvas, root)
    toolbar.update()
    canvas.get_tk_widget().pack(side=tkinter.TOP, fill=tkinter.BOTH, expand=1)
    
    
    def on_key_press(event):
        print("you pressed {}".format(event.key))
        key_press_handler(event, canvas, toolbar)
    
    
    canvas.mpl_connect("key_press_event", on_key_press)
    
    
    def _quit():
        root.quit()     # stops mainloop
        root.destroy()  # this is necessary on Windows to prevent
                        # Fatal Python Error: PyEval_RestoreThread: NULL tstate
    
    
    button = tkinter.Button(master=root, text="Quit", command=_quit)
    button.pack(side=tkinter.BOTTOM)
    
    tkinter.mainloop()
    # If you put root.destroy() here, it will cause an error if the window is
    # closed with the window manager.
    

    XKCD-style sketch plots

    单纯为了好玩,matplotlib支持xkcd-style.

    import matplotlib.pyplot as plt
    import numpy as np
    
    with plt.xkcd():
        # Based on "Stove Ownership" from XKCD by Randall Munroe
        # http://xkcd.com/418/
    
        fig = plt.figure()
        ax = fig.add_axes((0.1, 0.2, 0.8, 0.7))
        ax.spines['right'].set_color('none')
        ax.spines['top'].set_color('none')
        plt.xticks([])
        plt.yticks([])
        ax.set_ylim([-30, 10])
    
        data = np.ones(100)
        data[70:] -= np.arange(30)
    
        plt.annotate(
            'THE DAY I REALIZED
    I COULD COOK BACON
    WHENEVER I WANTED',
            xy=(70, 1), arrowprops=dict(arrowstyle='->'), xytext=(15, -10))
    
        plt.plot(data)
    
        plt.xlabel('time')
        plt.ylabel('my overall health')
        fig.text(
            0.5, 0.05,
            '"Stove Ownership" from xkcd by Randall Munroe',
            ha='center')
    with plt.xkcd():
        # Based on "The Data So Far" from XKCD by Randall Munroe
        # http://xkcd.com/373/
    
        fig = plt.figure()
        ax = fig.add_axes((0.1, 0.2, 0.8, 0.7))
        ax.bar([0, 1], [0, 100], 0.25)
        ax.spines['right'].set_color('none')
        ax.spines['top'].set_color('none')
        ax.xaxis.set_ticks_position('bottom')
        ax.set_xticks([0, 1])
        ax.set_xlim([-0.5, 1.5])
        ax.set_ylim([0, 110])
        ax.set_xticklabels(['CONFIRMED BY
    EXPERIMENT', 'REFUTED BY
    EXPERIMENT'])
        plt.yticks([])
    
        plt.title("CLAIMS OF SUPERNATURAL POWERS")
    
        fig.text(
            0.5, 0.05,
            '"The Data So Far" from xkcd by Randall Munroe',
            ha='center')
    
    plt.show()
    

    image.png

    Subplot examples

    import matplotlib.pyplot as plt
    import numpy as np
    
    np.random.seed(19680801)
    data = np.random.randn(2, 100)
    
    fig, axs = plt.subplots(2, 2, figsize=(5, 5))
    axs[0, 0].hist(data[0])
    axs[1, 0].scatter(data[0], data[1])
    axs[0, 1].plot(data[0], data[1])
    axs[1, 1].hist2d(data[0], data[1])
    
    plt.show()
    

    image.png

  • 相关阅读:
    常用CSS书写技巧(不同浏览器之间的差异)
    有关页面滚动条的总结
    SQL数据库字段数据类型说明(整理)
    一个很好玩的程序(有点变态哦~)程序员智商测试!
    自学it18大数据笔记第二阶段Hiveday2——会持续更新……
    自学it18大数据笔记第二阶段avroday1——会持续更新……
    自学it18大数据笔记第二阶段hadoopday8——会持续更新……
    自学it18大数据笔记第一阶段Linuxday1——会持续更新……
    自学it18大数据笔记第二阶段hadoopday5——会持续更新……
    自学it18大数据笔记第一阶段Javaday05day06day07day08
  • 原文地址:https://www.cnblogs.com/MTandHJ/p/10804602.html
Copyright © 2011-2022 走看看