zoukankan      html  css  js  c++  java
  • G102040I

    傻逼题。我从来没见过eps这样的。。。

    打破了我对计算几何美好的幻想。

    eps=1e-6=>wa3  eps=1e-8->wa2  eps 1e-4->AC

    真的自闭,真的猜不到eps要设成1e-4,最后看了先杭电的代码,发现他们是1e-4,我就改了下,然后????过了????

    nmsl

    nmsl

    nmsl

    思路正确无比。赛后发现板子错了,把板子删了,tle3,把三分套三分换成了三分+板子,就开始无限WA制了

    精简一下就是一句话:求线段到三角形的距离。

    前置技能:三分,点到三角形的距离,点到线段的距离,点到平面的投影,点是否在三角形内

    然后就没了。赛时-13赛后+37

      1 #include <bits/stdc++.h>
      2 using namespace std;
      3 typedef double db;
      4 const db eps = 1e-4;
      5 const db pi = acos(-1);
      6 int sign(db k){if(k>eps)return 1;else if(k<-eps)return -1;return 0;}
      7 int cmp(db k1,db k2){return sign(k1-k2);}
      8 int inmid(db k1,db k2,db k3){return sign(k1-k3)*sign(k2-k3)<=0;}// k3 在 [k1,k2] 内
      9 struct point{
     10     db x,y,z;
     11     point operator + (point k1){return (point){x+k1.x,y+k1.y,z+k1.z};}
     12     point operator - (point k1){return (point){x-k1.x,y-k1.y,z-k1.z};}
     13     point operator * (db k1){return (point){x*k1,y*k1,z*k1};}
     14     point operator / (db k1){return (point){x/k1,y/k1,z/k1};}
     15     db length()const {return sqrt(x*x+y*y+z*z);}
     16     db len2()const {return x*x+y*y+z*z;}
     17 };
     18 point det(const point &a,const point &b){
     19     return point{a.y*b.z-a.z*b.y,a.z*b.x-a.x*b.z,a.x*b.y-a.y*b.x};
     20 }
     21 db dis(const point &a,const point &b){//距离
     22     return sqrt(pow(a.x-b.x,2)+pow(a.y-b.y,2)+pow(a.z-b.z,2));
     23 }
     24 struct line{
     25     point p[2];
     26     line (point k1,point k2){p[0]=k1; p[1]=k2;}
     27     point& operator [] (int k){return p[k];}
     28 };
     29 db dot(point k1,point k2){return k1.x*k2.x+k1.y*k2.y+k1.z*k2.z;}
     30 int dot_online_in(point p,line l){//点在线段上,包括端点
     31     return sign(det(p-l[0],p-l[1]).length())==0&&(l[0].x-p.x)*(l[1].x-p.x)<eps&&
     32            (l[0].y-p.y)*(l[1].y-p.y)<eps&&(l[0].z-p.z)*(l[1].z-p.z)<eps;
     33 }
     34 struct plane{
     35     point p[3];
     36     plane(point k1,point k2,point k3){p[0]=k1,p[1]=k2,p[2]=k3;}
     37     point& operator [] (int k){return p[k];}
     38 };
     39 point pvec(point s1,point s2,point s3){
     40     return det(s1-s2,s2-s3);
     41 }
     42 point pvec(plane s){return pvec(s[0],s[1],s[2]);}
     43 int dot_inplane_in(point p,plane s){
     44     return sign(det(s[0]-s[1],s[0]-s[2]).length()-det(p-s[0],p-s[1]).length()-
     45                 det(p-s[1],p-s[2]).length()-det(p-s[2],p-s[0]).length())==0;
     46 }
     47 int sameside(point p1,point p2,plane s){//两点在平面同侧
     48 //    point tmp = pvec(s);
     49     return dot(pvec(s),p1-s[0])*dot(pvec(s),p2-s[0])>eps;
     50 }
     51 int intersect_in(line l,plane s){//线段和三角形是否有交点包含边界
     52     return !sameside(l[0],l[1],s)&&
     53             !sameside(s[2],s[0],plane{l[0],l[1],s[1]})&&
     54            !sameside(s[0],s[1],plane{l[0],l[1],s[2]})&&
     55            !sameside(s[1],s[2],plane{l[0],l[1],s[0]});
     56 }
     57 point intersection(line l,plane s){//直线与平面的交点
     58     point ret = pvec(s);
     59     db t = ((ret.x*(s[0].x-l[0].x)+ret.y*(s[0].y-l[0].y))+ret.z*(s[0].z-l[0].z))/
     60            ((ret.x*(l[1].x-l[0].x)+ret.y*(l[1].y-l[0].y))+ret.z*(l[1].z-l[0].z));
     61     ret = l[0]+(l[1]-l[0])*t;return ret;
     62 }
     63 int t;
     64 point p[22];
     65 int check(plane a,plane b){//check 0;
     66     bool f=0;
     67     if(intersect_in({a[0],a[1]},b))f=1;
     68     if(intersect_in({a[1],a[2]},b))f=1;
     69     if(intersect_in({a[0],a[2]},b))f=1;
     70     if(intersect_in({b[0],b[1]},a))f=1;
     71     if(intersect_in({b[0],b[2]},a))f=1;
     72     if(intersect_in({b[1],b[2]},a))f=1;
     73     return f;
     74 }
     75 db slove(plane a,plane b){//b三个点到a的距离
     76     db ans = 1e18;
     77     point x = pvec(a);
     78     line s0 = {b[0],b[0]+x};
     79     point xx = intersection(s0,a);
     80     if(dot_inplane_in(xx,a))
     81         ans = min(ans,(xx-b[0]).length());
     82     line s1 = {b[1],b[1]+x};
     83     xx = intersection(s1,a);
     84     if(dot_inplane_in(xx,a))
     85         ans = min(ans,(xx-b[1]).length());
     86     line s2 = {b[2],b[2]+x};
     87     xx = intersection(s2,a);
     88     if(dot_inplane_in(xx,a))
     89         ans = min(ans,(xx-b[2]).length());
     90     return ans;
     91 }
     92 db ptoline(point p,line l){//点到直线的距离
     93     return (det(p-l[0],l[1]-l[0])/dis(l[0],l[1])).length();
     94 }
     95 point proj(point k1,point k2,point q){ // q 到直线 k1,k2 的投影
     96     point k=k2-k1; return k1+k*(dot(q-k1,k)/k.len2());
     97 }
     98 int inmid(point k1,point k2,point k3){
     99     return inmid(k1.x,k2.x,k3.x)&&inmid(k1.y,k2.y,k3.y)&&inmid(k1.z,k2.z,k3.z);
    100 }
    101 db slove2(point a,line b){//点到线段的距离
    102     point v1=b[1]-b[0],v2=a-b[0],v3=a-b[1];
    103     if(sign(dot(v1,v2)<0))return v2.length();
    104     else if(sign(dot(v1,v3))>0)return v3.length();
    105     else return det(v1,v2).length()/v1.length();
    106 //    point x = proj(b[0],b[1],a);
    107 //    if(dot_online_in(x,b))
    108 //        return (a-x).length();
    109 //    return min((a-b[0]).length(),(a-b[1]).length());
    110 }
    111 db dis_point_plane(point a,plane p){
    112     point xx = pvec(p);
    113     line l = {a,a+xx};
    114     point xxx = intersection(l,p);
    115     if(dot_inplane_in(xxx,p))
    116         return (a-xxx).length();
    117     return min(min(slove2(a,{p[0],p[1]}),slove2(a,{p[1],p[2]})),slove2(a,{p[2],p[0]}));
    118 }
    119 db slove3(line a,plane b){
    120     point l=a[0],r=a[1];
    121     for(int i=0;i<90;i++){
    122         point mid = (l+r)/2,lm=(l+mid)/2,rm=(r+mid)/2;
    123         if(dis_point_plane(lm,b)<=dis_point_plane(rm,b)){
    124             r=rm;
    125         } else
    126             l=lm;
    127     }
    128     return dis_point_plane(l,b);
    129 }
    130 double x,y,z;
    131 int main(){
    132     scanf("%d",&t);
    133     while (t--){
    134         for(int i=1;i<=6;i++){
    135             scanf("%lf%lf%lf",&x,&y,&z);
    136             p[i]={x,y,z};
    137         }
    138         plane a = {p[1],p[2],p[3]},b = {p[4],p[5],p[6]};
    139 //        if(check(a,b)){
    140 //            printf("%.11f
    ",0.0);
    141 //        }else{
    142             db ans = 1e18;
    143 //            ans = min(ans,slove(a,b));
    144 //            ans = min(ans,slove(b,a));
    145 //            for(int i=0;i<3;i++) {
    146 //                for(int k=0;k<3;k++) {
    147 //                    point l=a[i],r=a[(i+1)%3],lm,rm;
    148 //                    line t=(line){b[k],b[(k+1)%3]};
    149 //                    for(int j=0;j<90;j++) {
    150 //                        lm=l+(r-l)/3,rm=r-(r-l)/3;
    151 //                        if(slove2(lm,t)<=slove2(rm,t)) r=rm;
    152 //                        else l=lm;
    153 //                    }
    154 //                    ans=std::min(ans,slove2(r,t));
    155 //                }
    156 //            }
    157             for(int i=0;i<3;i++){
    158                 ans = min(ans,slove3({a[i],a[(i+1)%3]},b));
    159                 ans = min(ans,slove3({b[i],b[(i+1)%3]},a));
    160             }
    161             printf("%.11f
    ",ans);
    162 //        }
    163     }
    164 }
    165 /**
    166 1
    167 0 0 0 1 0 0 0 1 0
    168 2 2 1 3 2 1 2 3 1
    169  */
    View Code
  • 相关阅读:
    springboot @value 注解的使用
    Django时间时区问题(received a naive datetime while time zone support is active
    乐观锁与悲观锁
    Django 从入门到放弃
    根据数据库表生成 model 类
    Django CSRF攻击
    Django的orm的 数据库查询语法大全
    js常用函数、书写可读性的js、js变量声明...
    Web Worker
    css编写规范
  • 原文地址:https://www.cnblogs.com/MXang/p/10746442.html
Copyright © 2011-2022 走看看