zoukankan      html  css  js  c++  java
  • 图像风格迁移(Pytorch)

    图像风格迁移

    最后要生成的图片是怎样的是难以想象的,所以朴素的监督学习方法可能不会生效,

    Content Loss

    根据输入图片和输出图片的像素差别可以比较损失

    (l_{content} = frac{1}{2}sum (C_c-T_c)^2)

    Style Loss

    从中间提取多个特征层来衡量损失。

    利用(Gram) (Matrix)(格拉姆矩阵)可以衡量风格的相关性,对于一个实矩阵(X),矩阵(XX^T)(X)的行向量的格拉姆矩阵

    (l_{style}=sum wi(Ts-Ss)^2)

    总的损失函数

    (L_{total(S,C,T)}=alpha l_{content}(C,T)+eta L_{style}(S,T))


    代码
    from PIL import Image
    import matplotlib.pyplot as plt
    import numpy as np
    
    import torch
    import torch.optim as optim
    from torchvision import transforms, models
    
    vgg = models.vgg19(pretrained=True).features	#使用预训练的VGG19,features表示只提取不包括全连接层的部分
    
    for i in vgg.parameters():
        i.requires_grad_(False)		#不要求训练VGG的参数
    

    定义一个显示图片的函数

    def load_img(path, max_size=400,shape=None):
        img = Image.open(path).convert('RGB')
        
        if(max(img.size)) > max_size:	#规定图像的最大尺寸
            size = max_size
        else:
            size = max(img.size)
        
        if shape is not None:
            size = shape
        transform = transforms.Compose([
            transforms.Resize(size),
            transforms.ToTensor(),
            transforms.Normalize((0.485, 0.456, 0.406),
                                 (0.229, 0.224, 0.225))
        ])
        '''删除alpha通道(jpg), 转为png,补足另一个维度-batch'''
        img = transform(img)[:3,:,:].unsqueeze(0)
        return img
    

    载入图像

    content  = load_img('./images/turtle.jpg')
    style = load_img('./images/wave.jpg', shape=content.shape[-2:])		#让两张图尺寸一样
    
    '''转换为plt可以画出来的形式'''
    def im_convert(tensor):
        img = tensor.clone().detach()
        img = img.numpy().squeeze()
        img = img.transpose(1,2,0)
        img = img * np.array((0.229, 0.224, 0.225)) + np.array((0.485, 0.456, 0.406))
        img = img.clip(0,1)
        return img
    

    使用的图像为(左边为Content Image,右边为Style Image):

    定义几个待会要用到的函数

    def get_features(img, model, layers=None):
        '''获取特征层'''
        if layers is None:
            layers = {
                '0':'conv1_1',
                '5':'conv2_1',
                '10':'conv3_1',
                '19':'conv4_1',
                '21':'conv4_2',    #content层
                '28':'conv5_1'
            }
        
        features = {}
        x = img
        for name, layer in model._modules.items():
            x = layer(x)
            if name in layers:
                features[layers[name]] = x
        
        return features
    
    def gram_matrix(tensor):
        '''计算Gram matrix'''
        _, d, h, w = tensor.size()  #第一个是batch_size
        
        tensor = tensor.view(d, h*w)
        
        gram = torch.mm(tensor, tensor.t())
        
        return gram    
    
    content_features = get_features(content, vgg)
    style_features = get_features(style, vgg)
    
    style_grams = {layer:gram_matrix(style_features[layer]) for layer in style_features}
    
    target = content.clone().requires_grad_(True)
    
    '''定义不同层的权重'''
    style_weights = {
        'conv1_1': 1,
        'conv2_1': 0.8,
        'conv3_1': 0.5,
        'conv4_1': 0.3,
        'conv5_1': 0.1,
    }
    '''定义2种损失对应的权重'''
    content_weight = 1
    style_weight = 1e6
    

    训练过程

    show_every = 400
    optimizer = optim.Adam([target], lr=0.003)
    steps = 2000
    
    for ii in range(steps):
        target_features = get_features(target, vgg)
        
        content_loss = torch.mean((target_features['conv4_2'] - content_features['conv4_2'])**2)   
        style_loss = 0
        '''加上每一层的gram_matrix矩阵的损失'''
        for layer in style_weights:
            target_feature = target_features[layer]
            target_gram = gram_matrix(target_feature)
            _, d, h, w = target_feature.shape
            style_gram = style_grams[layer]
            layer_style_loss = style_weights[layer] * torch.mean((target_gram - style_gram)**2)
            style_loss += layer_style_loss/(d*h*w)     #加到总的style_loss里,除以大小
            
        total_loss = content_weight * content_loss + style_weight * style_loss
        
        optimizer.zero_grad()
        total_loss.backward()
        optimizer.step()
        
        if ii % show_every == 0 :
            print('Total Loss:',total_loss.item())
            plt.imshow(im_convert(target))
            plt.show()
    

    将输入的图像和最后得到的混合图作比较:

    没有达到最好的效果,还有可以优化的空间√

    参考:
    1. Image Style Transfer Using Convolutional Neural Networks论文
    2. Udacity——PyTorch Scholarship Challenge
  • 相关阅读:
    Artifact Project3:war exploded: Error during artifact deployment. See server log for details.
    Struts2的OGNL表达式语言
    java空指针异常:java.lang.NullPointException
    两天撸一个天气应用微信小程序
    Graves of the Internet
    JavaScript并非“按值传递”
    js实现黑客帝国二进制雨
    JavaScript“并非”一切皆对象
    纯CSS打造银色MacBook Air(完整版)
    element-ui中轮播图自适应图片高度
  • 原文地址:https://www.cnblogs.com/MartinLwx/p/10572466.html
Copyright © 2011-2022 走看看