http://poj.org/problem?id=1201 (题目链接)
题意
给出n个区间${[ai,bi]}$,要求选出尽可能少的数,使得每个区间i中至少存在${c[i]}$个数。
Solution
差分约束。
区间可以表示为${sum[b_i]-sum[a_i-1]}$,所以可以列出n个不等式:${sum[b_i]-sum[a_i-1]>=c[i]}$,然后每个${sum[x]}$满足$${0<=sum[x+1]-sum[x]<=1}$$$${sum[x+1]-sum[x]>=0,sum[x]-sum[x+1]>=-1}$$
这样的话构图就确定了连通性。建完图后,跑SPFA最长路即可。
代码
// poj1201 #include<algorithm> #include<iostream> #include<cstdlib> #include<cstring> #include<cstdio> #include<cmath> #include<queue> #define LL long long #define inf 2147483640 #define MOD 998244353 #define Pi acos(-1.0) #define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout); using namespace std; inline LL getint() { int f,x=0;char ch=getchar(); while (ch<='0' || ch>'9') {if (ch=='-') f=-1;else f=1;ch=getchar();} while (ch>='0' && ch<='9') {x=x*10+ch-'0';ch=getchar();} return x*f; } const int maxn=50010; struct edge {int to,w,next;}e[maxn<<2]; int vis[maxn],dis[maxn],head[maxn],n,cnt,L,R; void insert(int u,int v,int w) { e[++cnt].to=v;e[cnt].next=head[u];head[u]=cnt;e[cnt].w=w; } int SPFA() { queue<int> q; for (int i=L;i<=R;i++) { vis[i]=1; dis[i]=0; q.push(i); } while (!q.empty()) { int x=q.front(); q.pop(); vis[x]=0; for (int i=head[x];i;i=e[i].next) if (e[i].w+dis[x]>dis[e[i].to]) { dis[e[i].to]=e[i].w+dis[x]; if (!vis[e[i].to]) {vis[e[i].to]=1;q.push(e[i].to);} } } return dis[R]; } int main() { while (scanf("%d",&n)!=EOF) { memset(head,0,sizeof(head)); L=inf,R=0; for (int u,v,w,i=1;i<=n;i++) { scanf("%d%d%d",&u,&v,&w); insert(u-1,v,w); L=min(L,u-1); R=max(R,v); } for (int i=L;i<=R;i++) { insert(i,i+1,0); insert(i+1,i,-1); } printf("%d ",SPFA()); } return 0; }