zoukankan      html  css  js  c++  java
  • 每日一题_191010

    (f(x)={ln}(x+1),g(x)=mathrm{e}^x-1).
    ((1)) 证明:(xgeqslant 0)时,(dfrac{2x}{x+2}leqslant f(x)leqslant x);
    ((2)) (xgeqslant 0)时,(f(x)cdot g(x)geqslant ax^2),求实数(a)的取值范围.

    解析:
    ((1)) 由于我们熟知$$
    forall xgeqslant 1,x-1geqslant {ln}xgeqslant dfrac{2(x-1)}{x+1}.$$因此只需将上述不等式中的(x)置换为(x+1),则题中不等式得证.
    ((2)) 经由端点分析可知(aleqslant 1). 以下对参数(a)(1)为分界点分类讨论.
    情形一 若(aleqslant 1),构造函数$$
    h(x)=dfrac{mathrm{e}x-1}{x},x>0.$$对$h(x)$求导可得$$h'(x)=dfrac{xmathrm{e}x-mathrm{e}x+1}{x2},x>0.$$易知(forall x>0,h'(x)>0),所以(h(x))为单调递增函数,因此$$forall x>0,h(x)=dfrac{mathrm{e}^x-1}{x}>dfrac{x}{{ln}(x+1)}=h({ln}(x+1)).$$从而$$forall xgeqslant 0,left(mathrm{e}^x-1 ight){ln}(x+1)geqslant x^2geqslant ax^2.$$因此(aleqslant 1)满足题设.
    情形二 若(a>1),构造函数$$F(x)=(mathrm{e}x-1){ln}(x+1)-ax2,xgeqslant 0.$$分别对(F(x))求一二阶导函数可得$$
    egin{cases}
    &F'(x)=dfrac{mathrm{e}x-1}{x+1}+mathrm{e}x{ln}(x+1)-2ax,
    &F''(x)=dfrac{xmathrm{e}x+1}{(x+1)2}+mathrm{e}^xleft[{ln}(x+1)+dfrac{1}{x+1} ight]-2a.
    end{cases}$$
    (F''(0)=2-2a<0).此时必然存在(x_0>0),使得$$
    forall xinleft(0,x_0 ight),F''(x)<0,$$即在区间((0,x_0))内,(F'(x))单调递减,此时$$
    forall xinleft(0,x_0 ight),F'(x)<F'(0)=0.$$于是(F(x))((0,x_0))单调递减,有$$
    forall xinleft(0,x_0 ight),F(x)<F(0)=0.$$不符题设,舍去.

  • 相关阅读:
    LeetCode 461. Hamming Distance
    LeetCode 442. Find All Duplicates in an Array
    LeetCode 448. Find All Numbers Disappeared in an Array
    LeetCode Find the Difference
    LeetCode 415. Add Strings
    LeetCode 445. Add Two Numbers II
    LeetCode 438. Find All Anagrams in a String
    LeetCode 463. Island Perimeter
    LeetCode 362. Design Hit Counter
    LeetCode 359. Logger Rate Limiter
  • 原文地址:https://www.cnblogs.com/Math521/p/11644066.html
Copyright © 2011-2022 走看看