zoukankan      html  css  js  c++  java
  • 每日一题_191208

    (F_1,F_2)是椭圆(dfrac{x^2}{a^2}+dfrac{y^2}{b^2}=1(a>b>0))的左右焦点,点(P)在椭圆上, 且(angle F_1PF_2=dfrac{pi}{3}), ( riangle F_1PF_2)的外接圆的半径与其内切圆半径之比为(2:1).
    ((1)) 求椭圆的离心率(e);
    ((2))(AB)是椭圆垂直于(x)轴的弦,(C)的坐标为((3,0)),直线(BC)与椭圆交于点(E),若直线(AE)恒过定点(left(dfrac{4}{3},0 ight)),求椭圆的方程.

    ![](https://img2018.cnblogs.com/blog/1793042/201912/1793042-20191205204328466-1676592116.png)

    解析: $(1)$ 设$ riangle F_1PF_2$的外接圆和内切圆半径分别为$R,r$,设$c$为椭圆的半焦距,则由正弦定理可知$$ R=dfrac{1}{2}cdot dfrac{|F_1F_2|}{sin angle F_1PF_2}=dfrac{2sqrt{3}c}{3}.$$ 由椭圆焦点三角形面积公式可知,$ riangle F_1PF_2$的面积$$ S_{ riangle F_1PF_2}=b^2 andfrac{angle F_1PF_2}{2}=dfrac{sqrt{3}}{3}b^2=dfrac{sqrt{3}}{3}(a^2-c^2).$$ 易知$ riangle F_1PF_2$的周长为$$ L_{ riangle F_1PF_2}=|PF_1|+|PF_2|+|F_1F_2|=2(a+c).$$ 由等面积法计算得$ riangle F_1PF_2$的内切圆半径长为$$ r=dfrac{2S_{ riangle F_1PF_2}}{L_{ riangle F_1PF_2}}=dfrac{sqrt{3}}{3}left(a-c ight).$$又由$R:r=2:1$可得$$ e=dfrac{c}{a}=dfrac 12.$$ $(2)$ 法一 如图,连接$AC$,由于$A,B$关于$x$轴对称,因此直线$BC$和$AC$也关于直线$x$轴对

    ![](https://img2018.cnblogs.com/blog/1793042/201912/1793042-20191205204419190-1187922405.png)

    称,从而$AC$与椭圆的另一个交点$M$也与$E$关于$x$轴对称,所以$M,G,B$三点共线.其中$G$的坐标为$$Gleft(dfrac{4}{3},0 ight),$$ 结合$(1)$可设椭圆方程为$dfrac{x^2}{4t}+dfrac{y^2}{3t}=1$,其中$t>0$.则$C$点位于$G$点关于椭圆的极线$$x=3t$$上.而$C(3,0)$,所以$t=1$,于是可得所求椭圆方程为$dfrac{x^2}{4}+dfrac{y^2}{3}=1$. 法二

    ![](https://img2018.cnblogs.com/blog/1793042/201912/1793042-20191205204818263-942531377.png)

    设待求椭圆方程为$dfrac{x^2}{4t^2}+dfrac{y^2}{3t^2}=1$,其中$t>0$,则$A,B,E$三点坐标可记为 $$ egin{split} &Aleft(2tcosalpha,-sqrt{3}tsinalpha ight) ,\ &Bleft(2tcosalpha,sqrt{3}tsinalpha ight),\ &Eleft(2tcoseta,sqrt{3}tsineta ight). end{split} $$ 由于$BE$直线的$x$截距为$3$,因此由截距坐标公式可得 $$ egin{split} 3&=dfrac{2tcosalphacdot sqrt{3}tsineta-2tcosetacdotsqrt{3}tsinalpha}{sqrt{3}tsineta-sqrt{3}tsinalpha}\ &=dfrac{2tsinleft(eta-alpha ight)}{sineta-sinalpha}\ &=dfrac{2tcosdfrac{eta-alpha}{2}}{cosdfrac{eta+alpha}{2}}. end{split} $$ 同理,由直线$AE$的$x$截距为$dfrac{4}{3}$,可得$$ dfrac{4}{3}=dfrac{2tcosdfrac{eta+alpha}{2}}{cosdfrac{eta-alpha}{2}}.$$将以上两式相乘可得$ 4=4t^2$,从而解得 $t=1$ ,于是所求椭圆方程为 $dfrac{x^2}{4}+dfrac{y^2}{3}=1$.
  • 相关阅读:
    [转]谁抢了我的焦点
    VBA 对比两行数据
    VBA 自动得到分数
    VBA Excel 对比两列数据
    将图片读到二进制
    [转]常用字符与ASCII代码对照表
    [转]Java 运算符的优先级
    SqlBulkCopy 快速插入数据
    多列转一行
    C# 线程小结
  • 原文地址:https://www.cnblogs.com/Math521/p/11991852.html
Copyright © 2011-2022 走看看