题目大意:给你$n$,一种合法的排列为,排列中没有$s[i\%n+1]-s[i]==1$,求合法方案数
题解:容斥,令$f_{i,j}$表示有$i$个元素,至少包含$j$个$s[i\%n+1]-s[i]==1$的方案数,发现$f_{n,1}=inom n 1(n-2)!$个
推广$f_{n,k}=inom n k(n-k-1)!$(令$(-1)!==1$)
$ herefore ans = (-1)^n + sum_{k = 0}^{n - 1} (-1)^k inom{n}{k} (n - k - 1)!$
卡点:无
C++ Code:
#include <cstdio> #define maxn 100010 const long long mod = 998244353; int Tim, n; long long FAC[maxn + 1], inv[maxn], *fac = &FAC[1], ans; long long C(long long a, long long b) { if (a < b) return 0; return fac[a] * inv[b] % mod * inv[a - b] % mod; } int main() { scanf("%d", &Tim); fac[-1] = fac[0] = fac[1] = inv[0] = inv[1] = 1; for (int i = 2; i <= 100000; i++) { fac[i] = fac[i - 1] * i % mod; inv[i] = inv[mod % i] * (mod - mod / i) % mod; } for (int i = 2; i <= 100000; i++) inv[i] = inv[i] * inv[i - 1] % mod; while (Tim --> 0) { scanf("%d", &n); ans = 0; for (int i = 0; i <= n; i++) { ans = (ans + ((i & 1) ? -1ll : 1ll) * C(n, i) * fac[n - i - 1] % mod) % mod; } if (ans < 0) ans += mod; printf("%lld ", ans); } return 0; }