zoukankan      html  css  js  c++  java
  • [hdu6432]Problem G. Cyclic

    题目大意:给你$n$,一种合法的排列为,排列中没有$s[i\%n+1]-s[i]==1$,求合法方案数

    题解:容斥,令$f_{i,j}$表示有$i$个元素,至少包含$j$个$s[i\%n+1]-s[i]==1$的方案数,发现$f_{n,1}=inom n 1(n-2)!$个

    推广$f_{n,k}=inom n k(n-k-1)!$(令$(-1)!==1$)

    $ herefore ans = (-1)^n + sum_{k = 0}^{n - 1} (-1)^k inom{n}{k} (n - k - 1)!$

    卡点:

    C++ Code:

    #include <cstdio>
    #define maxn 100010
    const long long mod = 998244353;
    int Tim, n;
    long long FAC[maxn + 1], inv[maxn], *fac = &FAC[1], ans;
    long long C(long long a, long long b) {
    	if (a < b) return 0;
    	return fac[a] * inv[b] % mod * inv[a - b] % mod;
    }
    int main() {
    	scanf("%d", &Tim);
    	fac[-1] = fac[0] = fac[1] = inv[0] = inv[1] = 1;
    	for (int i = 2; i <= 100000; i++) {
    		fac[i] = fac[i - 1] * i % mod;
    		inv[i] = inv[mod % i] * (mod - mod / i) % mod;
    	}
    	for (int i = 2; i <= 100000; i++) inv[i] = inv[i] * inv[i - 1] % mod;
    	while (Tim --> 0) {
    		scanf("%d", &n);
    		ans = 0;
    		for (int i = 0; i <= n; i++) {
    			ans = (ans + ((i & 1) ? -1ll : 1ll) * C(n, i) * fac[n - i - 1] % mod) % mod;
    		}
    		if (ans < 0) ans += mod;
    		printf("%lld
    ", ans);
    	}
    	return 0;
    }
    
  • 相关阅读:
    Collection与Collections的区别
    Java容器基础概况
    IO与NIO的区别
    BIO、NIO、AIO的区别
    Java中的IO流
    Java中的抽象类
    String常用方法解析
    字符串反转
    vue路由传参
    flask框架(八)—自定义命令flask-script、多app应用、wtforms表单验证、SQLAIchemy
  • 原文地址:https://www.cnblogs.com/Memory-of-winter/p/9664783.html
Copyright © 2011-2022 走看看