zoukankan      html  css  js  c++  java
  • HDU-6273 Master of GCD

    Master of GCD

    Hakase has n numbers in a line. At first, they are all equal to 1. Besides, Hakase is interested in primes. She will choose a continuous subsequence [l, r] and a prime parameter x each time and for every l ≤ i ≤ r, she will change ai into ai ∗ x. To simplify the problem, x will be 2 or 3. After m operations, Hakase wants to know what is the greatest common divisor of all the numbers.

    Input

    The first line contains an integer T (1 ≤ T ≤ 10) representing the number of test cases. For each test case, the first line contains two integers n (1 ≤ n ≤ 100000) and m (1 ≤ m ≤ 100000), where n refers to the length of the whole sequence and m means there are m operations. The following m lines, each line contains three integers li (1 ≤ li ≤ n), ri (1 ≤ ri ≤ n), xi (xi ∈ {2, 3}), which are referred above.

    Output

    For each test case, print an integer in one line, representing the greatest common divisor of the sequence. Due to the answer might be very large, print the answer modulo 998244353.

     Example

    standard input standard output

    2

    5 3

    1 3 2

    3 5 2

    1 5 3                            6

    6 3 

    1 2 2

    5 6 2

    1 6 2                            2

    Explanation

    For the first test case, after all operations, the numbers will be [6, 6, 12, 6, 6]. So the greatest common divisor is 6.

    题意:t组数据,每组n,m。然后输出l,r,c(c为2或3)  l-r区间乘以c,然后求1~n的最大公约数。

    思路:如果没更新区间1~n的最大公约数是1,其实我们只需要计算1~n 2和3的都有个数,然后乘起来就是最大公约数,数据太大要用LL,然后%998244353.

    我们只需要维护一个树状数组,每次更新2,3的区间个数,然后再搞个快速幂就行。

    反思:没开LL,wa了两次。(傻逼

    #include<bits/stdc++.h>
    using namespace std;
    typedef long long ll ;
    const int maxn = 100005;
    const int Mod = 998244353;
    ll sum2[maxn],sum3[maxn];
    ll lowbit(ll k)
    {
        return k&(-k);
    }
    ll quickpow(ll a,ll b)
    {
        ll ans=1;
        a=a%Mod;
        while(b!=0)
        {
            if(b&1) ans=(ans*a)%Mod;
            b>>=1;
            a=(a*a)%Mod;
        }
        return ans;
    }
    void updata(ll k,ll *a,ll c)
    {
        while(k<maxn)
        {
            a[k]+=c;
            k+=lowbit(k);
        }
    }
    ll query(ll k,ll *a)
    {
        ll ans=0;
        while(k>0)
        {
            ans+=a[k];
            k-=lowbit(k);
        }
        return ans;
    }
    int main()
    {
        ll t,n,m,l,r,c;
        scanf("%lld",&t);
        while(t--)
        {
            memset(sum2,0,sizeof(sum2));
            memset(sum3,0,sizeof(sum3));
            ll ans=0;
            scanf("%lld %lld",&n,&m);
            while(m--)
            {
                scanf("%lld %lld %lld",&l,&r,&c);
                if(c==2)
                {
                    updata(l,sum2,1);
                    updata(r+1,sum2,-1);
                }
                else
                {
                    updata(l,sum3,1);
                    updata(r+1,sum3,-1);
                }
            }
            ll min2=query(1,sum2);
            ll min3=query(1,sum3);
            for(int i=2; i<=n; i++)
            {
                min2=min(min2,query(i,sum2));
                min3=min(min3,query(i,sum3));
            }
            printf("%lld
    ",(quickpow(2,min2)*quickpow(3,min3))%Mod);
        }
    }

    PS:摸鱼怪的博客分享,欢迎感谢各路大牛的指点~

  • 相关阅读:
    将.net core api 部署成windows服务
    根据2个经纬度点,计算这2个经纬度点之间的距离(通过经度纬度得到距离)
    .NET 基础知识 单文件部署和可执行文件 剪裁独立部署和可执行文件
    通过 InnoSetup 美化安装界面
    拼凑一个ABP VNext管理后台拼凑一个ABP VNext管理后台
    互联网软件的安装包界面设计Inno setup
    weinre  远程实时调试手机上的Web页面 JAVASCRIPT远程调试
    asp.net core web应用以服务的方式安装运行
    用 vue2 和 webpack 快速建构 NW.js 项目
    谷歌插件抓包 similarweb抓包
  • 原文地址:https://www.cnblogs.com/MengX/p/9084932.html
Copyright © 2011-2022 走看看