zoukankan      html  css  js  c++  java
  • BZOJ3230 相似子串 【后缀数组】

    题目分析:

    容易想到sa排好序之后,子串排名就是前面的子串减去height数组。所以正着做一遍,倒着做一遍就行了。

    代码:

      1 #include<bits/stdc++.h>
      2 using namespace std;
      3 
      4 const int maxn = 252000;
      5 const int N = 100000;
      6 
      7 int n,q;
      8 char str[maxn];
      9 
     10 int sa[maxn],rk[maxn],X[maxn],Y[maxn];
     11 int height[maxn],h[maxn],RMQ[maxn][19];
     12 int len[maxn],st1[maxn],st2[maxn];
     13 long long stnum[maxn];
     14 
     15 int chk(int x,int k){
     16     return rk[sa[x]]==rk[sa[x-1]]&&rk[sa[x]+(1<<k)]==rk[sa[x-1]+(1<<k)];
     17 }
     18 
     19 void getsa(){
     20     for(int i=0;i<n;i++) X[str[i]]++;
     21     for(int i=1;i<=N;i++) X[i] += X[i-1];
     22     for(int i=n-1;i>=0;i--) sa[X[str[i]]--] = i;
     23     for(int i = 2, num = 1;i <= n;i++)
     24     rk[sa[i]] = (str[sa[i]] == str[sa[i-1]]?num:++num);
     25     rk[sa[1]] = 1;
     26     for(int k=1;(1<<k-1)<=n;k++){
     27     for(int i=1;i<=N;i++) X[i] = 0;
     28     for(int i=n-(1<<k-1);i<n;i++) Y[i-n+(1<<k-1)+1]=i;
     29     for(int i=1,j=(1<<k-1)+1;i<=n;i++)
     30         if(sa[i]>=(1<<k-1))Y[j++]=sa[i]-(1<<k-1);
     31     for(int i=0;i<n;i++) X[rk[i]]++;
     32     for(int i=1;i<=N;i++) X[i]+=X[i-1];
     33     for(int i=n;i>=1;i--) sa[X[rk[Y[i]]]--] = Y[i];
     34     int num = 1; Y[sa[1]] = 1;
     35     for(int i=2;i<=n;i++) Y[sa[i]] = (chk(i,k-1)?num:++num);
     36     for(int i=0;i<n;i++) rk[i] = Y[i];
     37     if(num == n) break;
     38     }
     39 }
     40 
     41 void getheight(){
     42     for(int i=0;i<n;i++){
     43     if(i) h[i] = max(0,h[i-1]-1); else h[i] = 0;
     44     if(rk[i] == 1) continue;
     45     int comp = sa[rk[i]-1];
     46     while(str[comp+h[i]] == str[i+h[i]])h[i]++;
     47     }
     48     for(int i=0;i<n;i++) height[rk[i]] = h[i];
     49     for(int i=1;i<=n;i++) RMQ[i][0] = height[i];
     50     for(int k=1;(1<<k)<=n;k++){
     51     for(int i=1;i<=n;i++){
     52         if(i+(1<<k-1)>n) RMQ[i][k] = RMQ[i][k-1];
     53         else RMQ[i][k] = min(RMQ[i][k-1],RMQ[i+(1<<k-1)][k-1]);
     54     }
     55     }
     56 }
     57 
     58 int getLCP(int L,int R){
     59     if(L > R) swap(L,R);
     60     if(L == R) return n-sa[L];
     61     L++;
     62     int k = 0; while((1<<k+1)<=R-L+1)k++;
     63     return min(RMQ[L][k],RMQ[R-(1<<k)+1][k]);
     64 }
     65 
     66 void read(){
     67     scanf("%d%d",&n,&q);
     68     scanf("%s",str);
     69 }
     70 
     71 long long ans[maxn];
     72 void work(){
     73     getsa();
     74     getheight();
     75     for(int i=1;i<=n;i++) stnum[i] = stnum[i-1]+(n-sa[i])-height[i];
     76     for(int i=1;i<=q;i++){
     77     long long u,v; scanf("%lld%lld",&u,&v);
     78     if(u > v) swap(u,v); if(v > stnum[n]){ans[i] = -1;continue;}
     79     int pn = lower_bound(stnum+1,stnum+n+1,u)-stnum;
     80     int pm = lower_bound(stnum+1,stnum+n+1,v)-stnum;
     81     len[i] = min(height[pn]+u-stnum[pn-1],height[pm]+v-stnum[pm-1]);
     82     st1[i] = n-(sa[pn]+height[pn]+u-stnum[pn-1]);
     83     st2[i] = n-(sa[pm]+height[pm]+v-stnum[pm-1]);
     84     int LCP = getLCP(pn,pm); LCP = min(LCP,len[i]);
     85     ans[i]+=1ll*LCP*LCP;
     86     }
     87     for(int i=0;i<n/2;i++) swap(str[i],str[n-i-1]);
     88     memset(sa,0,sizeof(sa));
     89     memset(rk,0,sizeof(rk));
     90     memset(X,0,sizeof(X));
     91     memset(Y,0,sizeof(Y));
     92     memset(height,0,sizeof(height));
     93     memset(h,0,sizeof(h));
     94     memset(RMQ,0,sizeof(RMQ));
     95     getsa();
     96     getheight();
     97     for(int i=1;i<=q;i++){
     98     if(ans[i] == -1) continue;
     99     int LCP = getLCP(rk[st1[i]],rk[st2[i]]); LCP = min(LCP,len[i]);
    100     ans[i] += 1ll*LCP*LCP;
    101     }
    102     for(int i=1;i<=q;i++) printf("%lld
    ",ans[i]);
    103 }
    104 
    105 int main(){
    106     read();
    107     work();
    108     return 0;
    109 }
  • 相关阅读:
    事件基础 (事件对象 阻止事件冒泡)
    document
    linux 下使用shell命令iostat监控iowait是否超负载
    使用shell来监控linux的io
    linux下使用awk命令按时间段筛选日志
    gulp 压缩js
    cf776D Mahmoud and a Dictionary
    P1313 计算系数
    __builtin_popcount() 函数
    HDU 6386 Age of Moyu
  • 原文地址:https://www.cnblogs.com/Menhera/p/9602483.html
Copyright © 2011-2022 走看看