Description
有n个正整数a[i],设它们乘积为p,你可以给p乘上一个正整数q,使p*q刚好为正整数m的阶乘,求m的最小值。
Input
共两行。
第一行一个正整数n。
第二行n个正整数a[i]。
Output
共一行
一个正整数m。
Sample Input
1
6
Sample Output
3
样例解释:
当p=6,q=1时,p*q=3!
Data Constraint
对于10%的数据,n<=10
对于30%的数据,n<=1000
对于100%的数据,n<=100000,a[i]<=100000
Code
//By Menteur_Hxy
#pragma GCC diagnostic error "-std=c++11"
#pragma GCC optimize("-fdelete-null-pointer-checks,inline-functions-called-once,-funsafe-loop-optimizations,-fexpensive-optimizations,-foptimize-sibling-calls,-ftree-switch-conversion,-finline-small-functions,inline-small-functions,-frerun-cse-after-loop,-fhoist-adjacent-loads,-findirect-inlining,-freorder-functions,no-stack-protector,-fpartial-inlining,-fsched-interblock,-fcse-follow-jumps,-fcse-skip-blocks,-falign-functions,-fstrict-overflow,-fstrict-aliasing,-fschedule-insns2,-ftree-tail-merge,inline-functions,-fschedule-insns,-freorder-blocks,-fwhole-program,-funroll-loops,-fthread-jumps,-fcrossjumping,-fcaller-saves,-fdevirtualize,-falign-labels,-falign-loops,-falign-jumps,unroll-loops,-fsched-spec,-ffast-math,Ofast,inline,-fgcse,-fgcse-lm,-fipa-sra,-ftree-pre,-ftree-vrp,-fpeephole2",3)
#pragma GCC target("avx","sse2")
#include<set>
#include<map>
#include<cmath>
#include<cstdio>
#include<vector>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define int long long
#define F(i,a,b) for(register int i=(a);i<=(b);i++)
#define R(i,a,b) for(register int i=(b);i>=(a);i--)
#define E(i,u) for(register int i=head[u];i;i=nxt[i])
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin)),p1==p2?EOF:*p1++)
using namespace std;
typedef long long LL;
char buf[1<<21],*p1,*p2;
inline int read() {
int x=0,f=1; char c=getchar();
while(!isdigit(c)) {if(c=='-')f=-f;c=getchar();}
while(isdigit(c)) x=(x<<1)+(x<<3)+c-48,c=getchar();
return x*f;
}
const int N=100010;
int n,tot,cnt;
int pri[N],vis[N],mip[N],p[N],M[N];
void resolve(int x) {
while(mip[x]!=x) {
if(!M[mip[x]]) p[++cnt]=mip[x];
M[mip[x]]++; x/=mip[x];
}
if(mip[x]==x&&x!=1&&x!=0) {
if(!M[mip[x]]) p[++cnt]=mip[x];
M[mip[x]]++;
}
}
bool jud(int x) {
F(i,1,cnt) {
int res=0,tmp=p[i];
while(tmp<=x) res+=x/tmp,tmp*=p[i];
if(res<M[p[i]]) return 0;
} return 1;
}
void init() {
mip[1]=1;
F(i,2,100000) {
if(!vis[i]) pri[++tot]=i,mip[i]=i;
for(register int j=1;j<=tot&&i*pri[j]<=100000;j++) {
vis[i*pri[j]]=1;
mip[i*pri[j]]=pri[j];
if(i%pri[j]==0) break;
}
}
}
signed main() {
freopen("factorial.in","r",stdin);
freopen("factorial.out","w",stdout);
n=read();
init();
F(i,1,n) resolve(read());
// jud(10);
// F(i,1,cnt) cout<<p[i]<<" ";cout<<endl;
int l=1,r=5e6;
while(l<=r) {
int mid=(l+r)>>1;
if(jud(mid)) r=mid-1;
else l=mid+1;
// printf("%d
",mid);
}
printf("%d",l);
return 0;
}