题解:
因为一个数是合法数,那么询问区间内的其他数都要是这个数的倍数,也就是这个区间内的gcd刚好是这个数。
对于这个区间的gcd来说,不能通过前后缀来算。
所以通过ST表来询问这个区间的gcd。
那么题目就变成了询问一个区间内有多少个k。
我们对于每个数都离散化之后,在相应的数字存下下标。
然后二分一下个数。
代码:
![](https://images.cnblogs.com/OutliningIndicators/ContractedBlock.gif)
#include<bits/stdc++.h> using namespace std; #define Fopen freopen("_in.txt","r",stdin); freopen("_out.txt","w",stdout); #define LL long long #define ULL unsigned LL #define fi first #define se second #define pb push_back #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define lch(x) tr[x].son[0] #define rch(x) tr[x].son[1] #define max3(a,b,c) max(a,max(b,c)) #define min3(a,b,c) min(a,min(b,c)) typedef pair<int,int> pll; const int inf = 0x3f3f3f3f; const int _inf = 0xc0c0c0c0; const LL INF = 0x3f3f3f3f3f3f3f3f; const LL _INF = 0xc0c0c0c0c0c0c0c0; const LL mod = (int)1e9+7; const int N = 1e5 + 100; int a[N], b[N]; vector<int> vc[N]; int m, n; int id(int x){ int pos = lower_bound(b+1, b+1+m, x) - b; if(b[pos] == x) return pos; return -1; } int Log[N]; struct ST { int dp[N][20], a[N]; void init(int n) { for(int i = -(Log[0]=-1); i < N; i++) Log[i] = Log[i - 1] + ((i & (i - 1)) == 0); for(int i = 1; i <= n; ++i) dp[i][0] = a[i]; for(int j = 1; j <= Log[n]; j++) for(int i = 1; i+(1<<j)-1 <= n; i++) dp[i][j] = __gcd(dp[i][j-1], dp[i+(1<<(j-1))][j-1]); } int Query(int l, int r) { int k = Log[r - l + 1]; return __gcd(dp[l][k], dp[r-(1<<k)+1][k]); } }st; int Ac(){ scanf("%d", &n); for(int i = 1; i <= n; ++i){ scanf("%d", &a[i]); b[i] = a[i]; st.a[i] = a[i]; } st.init(n); sort(b+1, b+1+n); m = unique(b+1, b+1+n) - (b+1); for(int i = 1; i <= n; ++i){ vc[id(a[i])].pb(i); } int q; scanf("%d", &q); int l, r; while(q--){ scanf("%d%d", &l, &r); int x = st.Query(l, r); x = id(x); int ans = r - l + 1; if(~x){ ans -= upper_bound(vc[x].begin(), vc[x].end(), r) - lower_bound(vc[x].begin(), vc[x].end(), l); } printf("%d ", ans); } return 0; } int main(){ Ac(); return 0; }