zoukankan      html  css  js  c++  java
  • 001-决策树算法介绍

    树模型:

    决策树:从根节点一步一步走到叶子节点(决策)

    所有的数据最终都会落到叶子节点,既可以做分类也可以做回归

    例如:

    一家5个人是否愿意玩电脑游戏:

     

    树的组成:

    根节点:第一个选择点

        最重要的节点,也是分类效果最明显的方式

    非叶子节点与分支:中间过程

               进一步的分类,效果没有根节点明显

    叶子节点:最终决策的结果

    决策树就相当于是选秀节目,层层选拔

     

     

    节点:

      增加节点相当于在数据内部横切一刀

      节点是否是越多越好?

                表面看起来像是这样,实际中不是,后边会提到

                

     

     

     

    决策树的训练与测试:

    训练阶段:从给定的训练集构造出来一棵树(从跟节点开始选择特征,如何进行特征切分)

    测试阶段:根据构造出来的树模型从上到下去走一遍就好了

    一旦构造好了决策树,那么分类或者预测任务就很简单了,只需要走一遍就可以了,那么难点就在于如何构造出来一颗树,这就没那么容易了,需要考虑的问题还有很多的!

     

     

     

    如何切分特征(选择节点)

    问题:根节点的选择该用哪个特征呢?接下来呢?如何切分呢?

    想象一下:我们的目标应该是根节点就像一个老大似的能更好的切分数据(分类的效果更好),根节点下面的节点自然就是二当家了。

    目标:通过一种衡量标准,来计算通过不同特征进行分支选择后的分类情况,找出来最好的那个当成根节点,以此类推。

     

    那么衡量标准该如何选取呢?根据什么?例如比武是根据武力高强,唱歌是根据唱歌好坏,我不是明星是根据拼爹爹。

    我们的数据衡量标准

    衡量标准-熵

    熵:熵是表示随机变量不确定性的度量

    (解释:说白了就是物体内部的混乱程度,比如杂货市场里面什么都有那肯定混乱呀,专卖店里面只卖一个牌子的那就稳定多啦,也就是混乱程度越大的熵值越大)

    $H(X)=-sum Pi*logPi,i=1,2,3,...,n$

    -求和(取到一个类别的概率*log该类别的概率)

    一个栗子:A集合[1,1,1,1,1,1,1,1,2,2]
         B集合[1,2,3,4,5,6,7,8,9,1]

    显然A集合的熵值要低,因为A里面只有两种类别,相对稳定一些而B中类别太多了,熵值就会大很多。(在分类任务中我们希望通过节点分支后数据类别的熵值大还是小呢?)

    如果有一个C集合[1,1,1,1,1,1,1,1,1,1],则LogPC= 0,1出现的概率是100%

     

    如果Pi的值很大,也就是说i的概率很大,那么LogPi的值就很接近于0,反之LogPi的值就会越小,前边有一个负号,则-LogPi的值就越大,

    那么越大说明熵值越大,也就是越混乱,也就是i内的每个元素,出现概率很小,也就是权重很低,说明i内的每个元素很分散,相同程度很小,

    反之,越接近于0的时候,就说明,i内的每个元素,出现概率很大,也就是权重很高,说明i内的每个元素很集中,相同程度很大。

     

    熵:不确定性越大,得到的熵值也就越大

    看下图:

    例如抛硬币:

    当p=0或p=1时,H(p)=0,随机变量完全没有不确定性,0表示正面,1表示反面,或者说,0表示完全不发生,1表示100%发生
    当p=0.5时,H(p)=1,此时随机变量的不确定性最大,0.5表示中间的混乱值

    如何决策一个节点的选择呢?

    信息增益:表示特征X使得类Y的不确定性减少的程度。(分类后的专一性,希望分类后的结果是同类在一起),也就是按照这个方法分类后,熵值变小了

    增益的意思就是,原来的熵值如果是10,分类后熵值变为8,那么信息增益就是10-8=2,

    也就是说,寻找信息增益最大的分类方法。

    接着在寻找信息增益第二大,第三大,第四大。。。。。

  • 相关阅读:
    17、网卡驱动程序-DM9000举例
    16、NOR FLASH驱动框架
    15.1 linux操作系统下nand flash驱动框架2
    15、NAND FLASH驱动程序框架
    14、块设备驱动程序框架分析
    12.2 linux USB框架分析(详细注册match匹配过程)
    arm-linux-gcc: Command not found
    12、USB设备驱动程序
    POJ-2752 Seek the Name, Seek the Fame (KMP)
    POJ-2406 Power Strings (KMP)
  • 原文地址:https://www.cnblogs.com/Mjerry/p/9718200.html
Copyright © 2011-2022 走看看