zoukankan      html  css  js  c++  java
  • FFT与NTT

    讲解:http://www.cnblogs.com/poorpool/p/8760748.html

    递归版FFT

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cstdlib>
    #include <cmath>
    using namespace std;
    const int MAXN = 4000005;
    const double PI = acos(-1);
    int init() {
    	int rv = 0, fh = 1;
    	char c = getchar();
    	while(c < '0' || c > '9') {
    		if(c == '-') fh = -1;
    		c = getchar();
    	}
    	while(c >= '0' && c <= '9') {
    		rv = (rv<<1) + (rv<<3) + c - '0';
    		c = getchar();
    	}
    	return rv * fh;
    }
    struct Complex{
    	double x, y;
    	Complex (double xx = 0.0, double yy = 0.0) {
    		x = xx; y = yy;
    	}
    	Complex operator + (const Complex &u) const{
    		return Complex(x + u.x, y + u.y);
    	}
    	Complex operator - (const Complex &u) const{
    		return Complex(x - u.x, y - u.y);
    	}
    	Complex operator * (const Complex &u) const{
    		return Complex(x * u.x - y * u.y, x * u.y + y * u.x);
    	}
    }a[MAXN], b[MAXN], buf[MAXN];
    int n, m;
    void fft(Complex a[], int lim, int opt) {
    	if(lim == 1) return;
    	int tmp = lim / 2;
    	for(int i = 0; i < tmp; i++) {
    		buf[i] = a[i * 2];
    		buf[tmp + i] = a[i * 2 + 1];
    	}
    	for(int i = 0; i < lim; i++) {
    		a[i] = buf[i];
    	}
    	fft(a, tmp, opt);
    	fft(a + tmp, tmp, opt);
    	Complex wn = Complex(cos(PI * 2.0 / lim), opt * sin(PI * 2.0 / lim)), w = Complex(1.0, 0.0);
    	for(int i = 0; i < tmp; i++) {
    		buf[i] = a[i] + w * a[i + tmp];
    		buf[i + tmp] = a[i] - w * a[i + tmp];
    		w = w * wn;
    	}
    	for(int i = 0; i < lim; i++) {
    		a[i] = buf[i];
    	}
    }
    int main() {
    	n = init(); m = init();
    	for(int i = 0; i <= n; i++) a[i].x = init();
    	for(int i = 0; i <= m; i++) b[i].x = init();
    	int lim = 1;
    	while(lim <= n + m) lim <<= 1;
    	fft(a, lim, 1);
    	fft(b, lim, 1);
    	for(int i = 0; i <= lim; i++) {
    		a[i] = a[i] * b[i];
    	}
    	fft(a, lim, -1);
    	for(int i = 0; i <= n + m; i++) {
    		printf("%d ", (int)(a[i].x / lim + 0.5));
    	}
    	printf("
    ");
    	return 0;
    }
    

    迭代版FFT

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <cmath>
    #include <cstdlib>
    #include <algorithm>
    using namespace std;
    const int MAXN = 4000005;
    const double PI = acos(-1);
    int init() {
    	int rv = 0, fh = 1;
    	char c = getchar();
    	while(c < '0' || c > '9') {
    		if(c == '-') fh = -1;
    		c = getchar();
    	}
    	while(c >= '0' && c <= '9') {
    		rv = (rv<<1) + (rv<<3) + c - '0';
    		c = getchar();
    	}
    	return rv * fh;
    }
    struct Complex{
    	double x, y;
    	Complex (double xx = 0.0, double yy = 0.0) {
    		x = xx; y = yy;
    	}
    	Complex operator + (const Complex &u) const {
    		return Complex(x + u.x, y + u.y);
    	}
    	Complex operator - (const Complex &u) const{
    		return Complex(x - u.x, y - u.y);
    	}
    	Complex operator * (const Complex &u) const{
    		return Complex(x * u.x - y * u.y, x * u.y + y * u.x);
    	}
    }a[MAXN], b[MAXN], buf[MAXN];
    int n, m, rev[MAXN], lim, limcnt;
    void fft(Complex a[], int opt) {
    	for(int i = 0; i <= lim; i++) {
    		if(i < rev[i]) swap(a[i], a[rev[i]]);
    	}
    	for(int mid = 1; mid < lim; mid <<= 1) {
    		Complex wn = Complex(cos(PI / mid), opt * sin(PI / mid));
    		for(int R = mid << 1, j = 0; j < lim; j += R) {
    			Complex w = Complex(1.0, 0.0);
    			for(int k = 0; k < mid; k++) {
    				Complex x = a[j + k], y = w * a[j + mid + k];
    				a[j + k] = x + y;
    				a[j + mid + k] = x - y;
    				w = w * wn;
    			}
    		}
    	}
    }
    int main() {
    	n = init(); m = init();
    	for(int i = 0; i <= n; i++) a[i].x = init();
    	for(int i = 0; i <= m; i++) b[i].x = init();
    	lim = 1;
    	while(lim <= n + m) {lim <<= 1; limcnt++;}
    	for(int i = 0; i <= lim; i++) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (limcnt - 1));
    	fft(a, 1);
    	fft(b, 1);
    	for(int i = 0; i <= lim; i++) a[i] = a[i] * b[i];
    	fft(a, -1);
    	for(int i = 0; i <= n + m; i++) {
    		printf("%d ", (int)(a[i].x / lim + 0.5));
    	}
    	return 0;
    }
    

    NTT

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <cmath>
    #include <algorithm>
    #define ll long long
    using namespace std;
    const int MAXN = 4000005, MOD = 998244353, gg = 3, gi = 332748118;
    ll init() {
    	ll rv = 0, fh = 1;
    	char c = getchar();
    	while(c < '0' || c > '9') {
    		if(c == '-') fh = -1;
    		c = getchar();
    	}
    	while(c >= '0' && c <= '9') {
    		rv = (rv<<1) + (rv<<3) + c - '0';
    		c = getchar();
    	}
    	return fh * rv;
    }
    ll lim = 1, limcnt, rev[MAXN], n, m, a[MAXN], b[MAXN];
    ll ksm(ll a, ll k) {
    	ll ans = 1;
    	while(k) {
    		if(k & 1ll) {
    			(ans *= a) %= MOD;
    		}
    		(a *= a) %= MOD;
    		k >>= 1;
    	}
    	return ans;
    }
    void ntt(ll a[], int opt) {
    	for(int i = 0; i <= lim; i++) {
    		if(i < rev[i]) swap(a[i], a[rev[i]]);
    	}
    	for(int mid = 1; mid < lim; mid <<= 1) {
    		ll wn = ksm(opt == 1 ? gg : gi, (MOD - 1) / (mid << 1));
    		for(int R = mid << 1, j = 0; j < lim; j += R) {
    			ll w = 1;
    			for(int k = 0; k < mid; k++) {
    				ll x = a[j + k], y = w * a[j + mid + k] % MOD;
    				a[j + k] = (x + y) % MOD;
    				a[j + mid + k] = (x - y + MOD) % MOD;
    				(w *= wn) %= MOD;
    			}
    		}
    	}
    	if(opt == -1) {
    		ll inv = ksm(lim, MOD - 2);
    		for(int i = 0; i <= lim; i++) {
    			(a[i] *= inv) %= MOD;
    		}
    	}
    }
    int main() {
    	n = init(); m = init();
    	for(int i = 0; i <= n; i++) {
    		a[i] = init();
    	}
    	for(int i = 0; i <= m; i++) b[i] = init();
    	while(lim <= (n + m)) lim <<= 1, limcnt++;
    	for(int i = 0; i <= lim; i++) 
    		rev[i] = (rev[i>>1]>>1) | ((i&1)<<(limcnt-1));
    	ntt(a, 1);
    	ntt(b, 1);
    	for(int i = 0; i <= lim; i++) (a[i] = a[i] * b[i]) %= MOD;
    	ntt(a, -1);
    	for(int i = 0; i <= n + m; i++) {
    		printf("%lld ", a[i]);
    	}
    	printf("
    ");
    	return 0;
    }
    
  • 相关阅读:
    关于贝宝支付的一些信息和思路
    自动执行的脚本不错的思路
    关于微信公众平台生成带参数的二维码的场景值和系统对接的问题
    centos7.3查看时区
    关于where和having的直观理解
    关于微信支付的退款那些事
    关于微信支付的那些事
    正则替换
    java 正则表达式语法
    正则表达式
  • 原文地址:https://www.cnblogs.com/Mr-WolframsMgcBox/p/9077707.html
Copyright © 2011-2022 走看看