zoukankan      html  css  js  c++  java
  • BZOJ4652 [Noi2016]循环之美 【数论 + 莫比乌斯反演 + 杜教筛】

    题目链接

    BZOJ

    题解

    orz
    此题太优美了

    我们令(frac{x}{y})为最简分数,则(x perp y)即,(gcd(x,y) = 1)

    先不管(k)进制,我们知道(10)进制下如果(frac{x}{y})是纯循环的,只要(2 perp y)(5 perp y)
    可以猜想在(k)进制下同样成立
    证明:
    (frac{x}{y})为纯循环小数,设其循环节长度为(l),那么一定满足

    [{ frac{xk^{l}}{y} } = { frac{x}{y}} ]

    其中({x})指小数部分
    可以写成

    [xk^{l}- lfloor frac{xk^{l}}{y} floor * y= x - lfloor frac{x}{y} floor * y ]

    可以看出就是同余的形式

    [xk^{l} equiv x pmod y ]

    由于(x perp y)

    [k^{l} equiv 1 pmod y ]

    要使存在(l),使得式子成立,那么一定(k perp y)

    所以我们有

    [egin{aligned} ans &= sumlimits_{i = 1}^{n} sumlimits_{j = 1}^{m} [i perp j] [j perp k] \ &= sumlimits_{j = 1}^{m} [j perp k] sumlimits_{i = 1}^{n} [(i,j) == 1] \ &= sumlimits_{j = 1}^{m} [j perp k] sumlimits_{i = 1}^{n} epsilon((i,j)) \ &= sumlimits_{j = 1}^{m} [j perp k] sumlimits_{i = 1}^{n} sumlimits_{d|(i,j)} mu(d) \ &= sumlimits_{d = 1}^{n} mu(d) sumlimits_{d|i}^{n} sumlimits_{d|j}^{m} [j perp k] \ &= sumlimits_{d = 1}^{n} [d perp k] mu(d) lfloor frac{n}{d} floor sumlimits_{j}^{lfloor frac{m}{d} floor} [j perp k] \ end{aligned} ]

    我们令

    [f(n) = sumlimits_{i}^{n} [i perp k] ]

    根据(gcd(i + k,k) = gcd(i,k)),我们有

    [f(n) = lfloor frac{n}{k} floor f(k) + f(n mod k) ]

    所以我们只需要(O(klogk))暴力计算(f(1....k))就可以(O(1))计算后面的式子了

    现在考虑前面的

    [sumlimits_{d = 1}^{n} [d perp k] mu(d) ]

    为了使能整除分块,我们必须算出其前缀和

    [g(n,k) = sumlimits_{i = 1}^{n} [i perp k] mu(d) ]

    用类似上面同样的方法:

    [egin{aligned} g(n,k) &= sumlimits_{i = 1}^{n} [i perp k] mu(i) \ &= sumlimits_{i = 1}^{n} mu(i) sumlimits_{d|i,d|k} mu(d) \ &= sumlimits_{d | k} mu(d) sumlimits_{d|i} mu(i) \ &= sumlimits_{d | k} mu(d) sumlimits_{i = 1}^{lfloor frac{n}{d} floor} mu(id) \ &= sumlimits_{d | k} mu(d) sumlimits_{i = 1}^{lfloor frac{n}{d} floor} [i perp d]mu(i) * mu(d) \ &= sumlimits_{d | k} mu(d)^2 sumlimits_{i = 1}^{lfloor frac{n}{d} floor} [i perp d]mu(i) \ &= sumlimits_{d | k} mu(d)^2 g(lfloor frac{n}{d} floor,d) \ end{aligned} ]

    就可以递归求解
    (n = 0)时,(g(0,k) = 0)
    (k = 1)时,(g(n,1) = sumlimits_{i = 1}^{n} mu(i)),上杜教筛即可
    因为(lfloor frac{n}{d} floor)只有(sqrt{n})种取值,(d)只能取(k)的因子,记其数量为(p)
    那么求(g(n,k))总的复杂度为(O(psqrt{n} + n^{frac{2}{3}}))

    于是乎我们就解决这道题了
    总复杂度(O(psqrt{n} + n^{frac{2}{3}} + sqrt{n} + klogk))

    #include<iostream>
    #include<cstdio>
    #include<cmath>
    #include<map>
    #include<cstring>
    #include<algorithm>
    #define LL long long int
    #define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
    #define REP(i,n) for (int i = 1; i <= (n); i++)
    #define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
    #define mp(a,b) make_pair<LL,LL>(a,b)
    using namespace std;
    const int maxn = 1000005,maxm = 100005,INF = 1000000000;
    map<LL,LL> _mu;
    map<LL,LL>::iterator it;
    map<pair<LL,LL>,LL> G;
    map<pair<LL,LL>,LL>::iterator IT;
    int N;
    int p[maxn],pi,isn[maxn];
    LL Smu[maxn],f[maxn],mu[maxn];
    LL n,m,K;
    int gcd(int a,int b){return b ? gcd(b,a % b) : a;}
    void init(){
    	N = 1000000;
    	mu[1] = 1;
    	for (int i = 2; i <= N; i++){
    		if (!isn[i]) p[++pi] = i,mu[i] = -1;
    		for (int j = 1; j <= pi && i * p[j] <= N; j++){
    			isn[i * p[j]] = true;
    			if (i % p[j] == 0){
    				mu[i * p[j]] = 0;
    				break;
    			}
    			mu[i * p[j]] = -mu[i];
    		}
    	}
    	for (int i = 1; i <= N; i++) Smu[i] = Smu[i - 1] + mu[i];
    	for (int i = 1; i <= K; i++) f[i] = f[i - 1] + (gcd(i,K) == 1);
    }
    LL S(LL n){
    	if (n <= N) return Smu[n];
    	if ((it = _mu.find(n)) != _mu.end()) return it->second;
    	LL ans = 1;
    	for (LL i = 2,nxt; i <= n; i = nxt + 1){
    		nxt = n / (n / i);
    		ans -= (nxt - i + 1) * S(n / i);
    	}
    	return _mu[n] = ans;
    }
    LL F(LL n){
    	return (n / K) * f[K] + f[n % K];
    }
    LL g(LL n,LL k){
    	if ((IT = G.find(mp(n,k))) != G.end())
    		return IT->second;
    	if (n == 0) return 0;
    	if (k == 1) return S(n);
    	LL ans = 0;
    	for (LL i = 1; i * i <= k; i++){
    		if (k % i == 0){
    			if (mu[i]) ans += g(n / i,i);
    			if (i * i != k && mu[k / i])
    				ans += g(n / (k / i),k / i);
    		}
    	}
    	return G[mp(n,k)] = ans;
    }
    int main(){
    	cin >> n >> m >> K;
    	init();
    	LL ans = 0,now,last = 0;
    	for (LL i = 1,nxt; i <= min(n,m); i = nxt + 1){
    		nxt = min(n / (n / i),m / (m / i));
    		now = g(nxt,K);
    		ans += 1ll * (now - last) * (n / i) * F(m / i);
    		last = now;
    	}
    	cout << ans << endl;
    	return 0;
    }
    
    
  • 相关阅读:
    成本直降50% | 阿里云发布云原生网关,开启下一代网关新进程
    阿里云容器服务全面升级为 ACK Anywhere,让云的边界拓展至企业需要的每个场景
    云拨测助力节卡机器人 全面优化海外网站性能
    如何加速云原生数据应用?这个开源项目备受关注
    课程升级 | 极速构建知识体系,即学即用 Serverless
    ECS 选款利器!PTS助您快速上云!
    Morphling:云原生部署 AI , 如何把降本做到极致?
    报名领奖|云栖大会,10月19-22日杭州不见不散!
    Dubbo3.0|阿里巴巴服务框架三位一体的选择与实践
    告别Kafka Stream,让轻量级流处理更加简单
  • 原文地址:https://www.cnblogs.com/Mychael/p/9016220.html
Copyright © 2011-2022 走看看