zoukankan      html  css  js  c++  java
  • 洛谷P4593 [TJOI2018]教科书般的亵渎 【数学】

    题目链接

    洛谷P4593

    题解

    orz dalao

    upd:经典的自然数幂和,伯努利数裸题

    由题我们只需模拟出代价,只需使用(S(n,k) = sumlimits_{i = 1}^{n} i^{k})这样的前缀和计算

    我不知道怎么来的这样一个公式:

    [(n + 1)^{k} - n^{k} = sumlimits_{i = 1}^{k} {k choose i}n^{k - i} ]

    这玩意怎么来的呢?
    左边为((n + 1)^k - n^k)((n+1)^k)可以看做有(k)个位置进行染色,每个位置有(n + 1)种染色的方案数,减去(n^k),就代表了拥有第(n + 1)种颜色的染色方案数
    那么这个等式就很好理解了,我们枚举第(n + 1)种颜色染了多少个,就得到了右式

    我们发现这个公式右侧涵盖了所有(n^i quad[ i in [0,k]])的项,我们令(k = k + 1),如果我们将所有(n)枚举出来,将会的得到:

    [egin{aligned} (n + 1)^{k + 1} - n^{k + 1} &= sumlimits_{i = 1}^{k + 1} {k + 1choose i}n^{k + 1 - i} \ n^{k + 1} - (n - 1)^{k + 1} &= sumlimits_{i = 1}^{k + 1} {k + 1choose i}(n - 1)^{k + 1 - i} \ ......... \ 2^{k + 1} - 1^{k + 1} &= sumlimits_{i = 1}^{k + 1} {k + 1choose i}1^{k + 1 - i} \ end{aligned} ]

    全部相加,得到:

    [(n + 1)^{k + 1} - 1 = sumlimits_{i= 1}^{k + 1} {k + 1 choose i} S(n,k + 1 - i) ]

    取出(S(n,k))

    [S(n,k) = frac{(n + 1)^{k + 1} - 1 - sumlimits_{i = 0}^{k - 1}{k + 1 choose i} S(n,i)}{k + 1} ]

    发现就可以(O(k^2))递推了
    由于模拟也是(O(k^2))
    所以最终复杂度(O(k^4))

    #include<algorithm>
    #include<iostream>
    #include<cstring>
    #include<cstdio>
    #include<cmath>
    #include<map>
    #define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
    #define REP(i,n) for (int i = 1; i <= (n); i++)
    #define mp(a,b) make_pair<int,int>(a,b)
    #define cls(s) memset(s,0,sizeof(s))
    #define cp pair<int,int>
    #define LL long long int
    using namespace std;
    const int maxn = 105,maxm = 100005,INF = 1000000000,P = 1000000007;
    inline LL read(){
    	LL out = 0,flag = 1; char c = getchar();
    	while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
    	while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
    	return out * flag;
    }
    LL a[maxn],fac[maxn],fv[maxn],inv[maxn],n,m,K;
    void init(){
    	fac[0] = fac[1] = fv[0] = fv[1] = inv[0] = inv[1] = 1;
    	for (int i = 2; i < maxn; i++){
    		fac[i] = 1ll * fac[i - 1] * i % P;
    		inv[i] = 1ll * (P - P / i) * inv[P % i] % P;
    		fv[i] = 1ll * fv[i - 1] * inv[i] % P;
    	}
    }
    LL C(LL n,LL m){
    	return 1ll * fac[n] * fv[m] % P * fv[n - m] % P;
    }
    LL qpow(LL a,LL b){
    	LL ans = 1; a %= P;
    	for (; b; b >>= 1,a = a * a % P)
    		if (b & 1) ans = ans * a % P;
    	return ans;
    }
    LL f[maxn];
    LL S(LL n,LL k){
    	if (!n) return 0;
    	f[0] = n % P;
    	for (int i = 1; i <= k; i++){
    		LL tmp = 0;
    		for (int j = 0; j <= i - 1; j++)
    			tmp = (tmp + C(i + 1,j) * f[j] % P) % P;
    		f[i] = (((qpow(n + 1,i + 1) - 1) % P - tmp) % P + P) % P * inv[i + 1] % P;
    	}
    	return f[k];
    }
    LL b[maxn];
    int main(){
    	init();
    	int T = read();
    	while (T--){
    		n = read(); m = read(); K = m + 1;
    		REP(i,m) a[i] = read(); a[K] = n + 1;
    		sort(a + 1,a + 1 + K);
    		LL ans = 0;
    		for (int i = 0; i <= m; i++){
    			for (int j = i; j <= m; j++){
    				ans = ((ans + (S(a[j + 1] - 1,K) - S(a[j],K)) % P) % P + P) % P;
    			}
    			LL len = a[i + 1] - a[i];
    			for (int j = i + 1; j <= K; j++) a[j] -= len;
    		}
    		printf("%lld
    ",ans);
    	}
    	return 0;
    }
    
    
  • 相关阅读:
    Centos7 下安装python3.7
    mysql数据库定时备份脚本
    helm 安装EFK(Elasticsearch+Filebeat+Kibana)收集容器日志
    kubernetes Ingress-nginx 配置TLS
    Kubernetes核心原理(三)之Scheduler
    Kubernetes核心原理(二)之Controller Manager
    预习作业(四)
    预习作业(三)
    预习作业(二)
    预习作业(一)
  • 原文地址:https://www.cnblogs.com/Mychael/p/9052067.html
Copyright © 2011-2022 走看看