zoukankan      html  css  js  c++  java
  • BZOJ3782 上学路线 【dp + Lucas + CRT】

    题目链接

    BZOJ3782

    题解

    我们把终点也加入障碍点中,将点排序,令(f[i])表示从((0,0))出发,不经过其它障碍,直接到达((x_i,y_i))的方案数
    首先我们有个大致的方案数({x_i + y_i choose x_i})
    但是中途可能会经过一些其它障碍点,那么就减去
    所以

    [f[i] = {x_i + y_i choose x_i} - sumlimits_{j = 1}^{i - 1} {x_i - x_j + y_i - y_j choose x_i - x_j}f[j] ]

    由于坐标很大,又观察到一种模数不大,一种模数为合数,且最大质因子也不大
    所以可以(Lucas)定理 + CRT合并

    #include<algorithm>
    #include<iostream>
    #include<cstring>
    #include<cstdio>
    #include<cmath>
    #include<map>
    #define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
    #define REP(i,n) for (int i = 1; i <= (n); i++)
    #define mp(a,b) make_pair<int,int>(a,b)
    #define cls(s) memset(s,0,sizeof(s))
    #define cp pair<int,int>
    #define LL long long int
    using namespace std;
    const int maxn = 205,maxm = 1000005,INF = 1000000000;
    inline LL read(){
    	LL out = 0,flag = 1; char c = getchar();
    	while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
    	while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
    	return out * flag;
    }
    LL N,M,T,P;
    struct point{LL x,y;}p[maxn];
    inline bool operator <(const point& a,const point& b){
    	return a.x == b.x ? a.y < b.y : a.x < b.x;
    }
    int pr[10],pi;
    LL fac[5][maxm],fv[5][maxm],inv[5][maxm];
    void sp(){
    	int x = P;
    	for (int i = 2; i * i <= x; i++)
    		if (x % i == 0){
    			pr[++pi] = i;
    			x /= i;
    		}
    	if (x - 1) pr[++pi] = x;
    }
    void init(){
    	for (int j = 1; j <= pi; j++){
    		fac[j][0] = fac[j][1] = fv[j][0] = fv[j][1] = inv[j][0] = inv[j][1] = 1;
    		int p = pr[j];
    		for (int i = 2; i < pr[j]; i++){
    			fac[j][i] = 1ll * fac[j][i - 1] * i % p;
    			inv[j][i] = 1ll * (p - p / i) * inv[j][p % i] % p;
    			fv[j][i] = 1ll * fv[j][i - 1] * inv[j][i] % p;
    		}
    	}
    }
    LL Lucas(LL n,LL m,int p){
    	if (m > n) return 0;
    	if (n < pr[p] && m < pr[p])
    		return 1ll * fac[p][n] * fv[p][m] % pr[p] * fv[p][n - m] % pr[p];
    	return 1ll * Lucas(n % pr[p],m % pr[p],p) * Lucas(n / pr[p],m / pr[p],p) % pr[p];
    }
    LL C(LL n,LL m){
    	if (m > n) return 0;
    	LL re = 0;
    	for (int i = 1; i <= pi; i++){
    		re = (re + 1ll * Lucas(n,m,i) * (P / pr[i]) % P * inv[i][P / pr[i] % pr[i]] % P) % P;
    	}
    	return re;
    }
    LL f[maxn];
    int main(){
    	N = read(); M = read(); T = read(); P = read();
    	sp(); init();  //REP(i,pi) printf("%d ",pr[i]); puts("");
    	REP(i,T) p[i].x = read(),p[i].y = read();
    	++T;
    	p[T].x = N,p[T].y = M;
    	sort(p + 1,p + T + 1);
    	for (int i = 1; i <= T; i++){
    		f[i] = C(p[i].x + p[i].y,p[i].x);
    		for (int j = 1; j < i; j++)
    			if (p[j].x <= p[i].x && p[j].y <= p[i].y)
    				f[i] = (f[i] - 1ll * f[j] * C(p[i].x - p[j].x + p[i].y - p[j].y,p[i].x - p[j].x) % P) % P;
    		f[i] = (f[i] + P) % P;
    		if (p[i].x == N && p[i].y == M){
    			printf("%lld
    ",f[i]);
    		}
    	}
    	return 0;
    }
    
    
  • 相关阅读:
    SPSS简单数据分析之分类汇总数据
    如何使用思维导图软件MindManager培养英语能力
    iMindMap画图技巧有哪些
    思维导图MindManager给我们的工作生活带来哪些便利
    bt下载器Folx智能标签系统可以用来做什么
    Beyond Compare文件夹同步详解
    RayFire Voronoi放射型破碎法相关属性详解
    怎么使用ABBYY FineReader 14填写表格
    详解MindMapper查看视图
    软件工程课程总结
  • 原文地址:https://www.cnblogs.com/Mychael/p/9190939.html
Copyright © 2011-2022 走看看