zoukankan      html  css  js  c++  java
  • 【分治-前缀积后缀积】JS Window @2018acm徐州邀请赛G

    问题 G: JS Window

    时间限制: 2 Sec  内存限制: 512 MB

    题目描述

    JSZKC has an array A of N integers. More over, he has a Window of length M which means the Window can contain M continuous integers in the array. 
    At the begging, the Window is at the position 1 which means the Window contains the integers from position 1 to position M. Each time the Window move right by one until it reach the end. So after one move, the window contains position 2 to position M+1. 
    At each place, we can multiply all the integers in the window. Please calculate the product mod P at each position. As the output maybe very large, you should output the sum of these product. 
    For example, if the array is”2 3 7 11 13” with m=3 and P=5. So the product at position 1 is 2, at position 2 is 1 and at position 3 is 1. 2+1+1=4. So you should output 4. 

    输入

    The input file contains several test cases, each of them as described below. 
    • The first line of the input contains three integers N,M,P (1 ≤ M≤ N≤ 1000000, 1 ≤ P≤ 1000000000), giving the length of the array, the length of the window and the number which we mod.  
    • The second line of the input contains four integers A[1],X,Y,Z(1 ≤ A[1],X,Y,Z≤ 1000000000). For i>1, A[i]=X*A[i-1]^2+Y* A[i-1]+Z 
    There are no more than 10 test cases. And the sum of N is no more than 10000000. 

    输出

    One line per case, an integer indicates the answer

    样例输入

    5 1 130495969
    3 3 0 2
    

    样例输出

    84928588

    meaning

    n个数,每次取m个连续的数,求积模p再求和。

    solution

    想到了就很水的题

    分块,每块长度为m,每块计算前缀积和后缀积

    没有恰好落在块上的区间,可以看作前一块的后缀积×后一块的前缀积。

    tips

    和不要模p。

    a[1]要模p。

    code

    #define IN_LB() freopen("C:\Users\acm2018\Desktop\in.txt","r",stdin)
    #define OUT_LB() freopen("C:\Users\acm2018\Desktop\out.txt","w",stdout)
    #define IN_PC() freopen("C:\Users\hz\Desktop\in.txt","r",stdin)
    #include <bits/stdc++.h>
    using namespace std;
    const int maxn = 1000005;
    typedef long long ll;
    ll n,m,p,x,y,z;
    ll a[maxn];
    ll ex[maxn],su[maxn];
    int main() {
    //    IN_LB();
        while(scanf("%lld%lld%lld",&n,&m,&p)!=EOF) {
            scanf("%lld%lld%lld%lld",&a[0],&x,&y,&z);
            a[0]%=p;
            for(int i=1; i<n; i++) {
                a[i] = (a[i-1]*a[i-1]%p*x%p+y*a[i-1]%p+z)%p;
            }
            for(int i=0; i<n; i++) {
                if(i%m==0) {
                    ex[i] = a[i];
                } else
                    ex[i] = a[i]*ex[i-1]%p;
            }
            for(int i=n-1; i>=0; i--) {
                if((i+1)%m==0||i==n-1) {
                    su[i] = a[i];
                } else
                    su[i] = a[i]*su[i+1]%p;
            }
            ll ans = 0;
            for(int i=m-1; i<n; i++) {
                if((i+1)%m==0) {
                    ans+=ex[i];
                } else
                    ans+=(ex[i]*su[i-m+1])%p;
            }
            printf("%lld
    ",ans);
        }
        return 0;
    }

     

  • 相关阅读:
    多机部署之定时任务完整方案
    老项目多机部署初步解决方案
    java多线程与线程池
    HotSpot项目结构
    调试HotSpot源代码
    在Ubuntu 16.04上编译OpenJDK8的源代码
    研究Java语言的编译器和虚拟机可参阅的资料
    我的书籍《深入解析Java编译器:源码剖析与实例详解》就要出版了
    hotspot编译
    研究小技巧及专业术语
  • 原文地址:https://www.cnblogs.com/NeilThang/p/9356603.html
Copyright © 2011-2022 走看看