zoukankan      html  css  js  c++  java
  • 【牛客Wannafly挑战赛23】F 计数

    题目链接

    题意

    给定一张边带权的无向图,求生成树的权值和是 k 的倍数的生成树个数模 p 的值。
    (nleq 100,kleq 100,pmod k=1)

    Sol

    看见整除然后 (pmod k=1) ,那么可以套个单位根反演。

    我们要求的东西就是:
    (sum_{E}[k|(sum_{ein E}val_e)])
    单位根反演一套:
    (frac{1}{k}sum_{E} sum_{i=0}^{k-1} w_k^{(sum_{ein E}val_e)i})

    然后又是常规操作:

    (frac{1}{k}sum_{i=0}^{k-1}sum_{E} w_k^{(sum_{ein E}val_e)i})
    (frac{1}{k}sum_{i=0}^{k-1}sum_{E} prod_{ein E} (w_k^{i})^{val_e})

    把一条边的边权看作 ((w_k^{i})^{val_e}) 矩阵树定理求一下就做完了。

    code:

    #include<bits/stdc++.h>
    #define Set(a,b) memset(a,b,sizeof(a))
    using namespace std;
    int mod;
    template <typename T> inline void init(T&x){
    	x=0;char ch=getchar();bool t=0;
    	for(;ch>'9'||ch<'0';ch=getchar()) if(ch=='-') t=1;
    	for(;ch>='0'&&ch<='9';ch=getchar()) x=(x<<1)+(x<<3)+(ch-48);
    	if(t) x=-x;return;
    }
    typedef long long ll;
    template <typename T>inline void Inc(T&x,int y){x+=y;if(x>=mod) x-=mod;return;}
    template <typename T>inline void Dec(T&x,int y){x-=y;if(x <  0) x+=mod;return;}
    template <typename T>inline int fpow(int x,T k){int ret=1;for(;k;k>>=1,x=(ll)x*x%mod) if(k&1) ret=(ll)ret*x%mod;return ret;}
    int Sum(int x,int y){x+=y;if(x>=mod) return x-mod;return x;}
    int Dif(int x,int y){x-=y;if(x < 0 ) return x+mod;return x;}
    const int N=101;
    int n,m,k,p,g;
    struct edge{
    	int u,v,c;
    }E[N*N];
    namespace Matrix_Tree{
    	int a[N][N];
    	inline void Build(int w){
    		Set(a,0);
    		for(int i=1;i<=m;++i) {
    			int u=E[i].u,v=E[i].v,c=E[i].c;
    			int val=fpow(w,c);
    			Dec(a[u][v],val),Dec(a[v][u],val);
    			Inc(a[u][u],val),Inc(a[v][v],val);
    		}return;
    	}
    	inline int Gauss(int n){
    		int f=0;
    		for(int i=1;i<=n;++i) {
    			int p=i;
    			for(int j=i;j<=n;++j) {if(a[i][j]) {p=j;break;}}
    			if(p!=i) f^=1,swap(a[p],a[i]);
    			int inv=fpow(a[i][i],mod-2);
    			for(int j=i+1;j<=n;++j){
    				if(!a[j][i]) continue;
    				int t=Dif(0,(ll)a[j][i]*inv%mod);
    				for(int k=i;k<=n;++k) Inc(a[j][k],(ll)a[i][k]*t%mod);
    			}
    		}
    		int ret=1;
    		for(int i=1;i<=n;++i) ret=(ll)ret*a[i][i]%mod;
    		if(f) ret=Dif(0,ret);return ret;
    	}
    }
    inline void Getroot(int mod){
    	int x=mod-1;static int pri[50],cnt=0;
    	for(int i=2;i*i<=x;++i) if(x%i==0) {pri[++cnt]=i,x/=i;while(x%i==0) x/=i;}
    	for(g=2;;++g){bool fl=1;
    		for(int i=1;i<=cnt;++i) if(fpow(g,(mod-1)/pri[i])==1) {fl=0;break;}
    		if(fl)return;
    	}
    }
    int main()
    {
    	init(n),init(m),init(k),init(p);
    	mod=p;Getroot(mod);int u,v,c;
    	for(int i=1;i<=m;++i){init(u),init(v),init(c);E[i]=(edge){u,v,c};}
    	int W=fpow(g,(mod-1)/k);
    	int w=1,ans=0;
    	for(int i=0;i<k;++i,w=(ll)w*W%mod) {
    		Matrix_Tree::Build(w);
    		Inc(ans,Matrix_Tree::Gauss(n-1));
    	}
    	ans=(ll)ans*fpow(k,mod-2)%mod;
    	cout<<ans<<endl;
    	return 0;
    }
    
    
  • 相关阅读:
    本博客完美的支持移动端
    vue监听滚动事件,元素顶部吸附实现
    提高java反射速度的方法method.setAccessible(true)
    居家必备技能之检测电表是否虚高
    家用无线网络故障排查记录
    java 泛型类的继承关系和转型问题
    Office2019 相关激活秘钥
    IDEA记坑之移动项目文件之后,import 找不到文件以及出现Cannot access的问题
    Idea 可用激活方式
    MySQL 合并查询,以map或对象的形式返回
  • 原文地址:https://www.cnblogs.com/NeosKnight/p/10680357.html
Copyright © 2011-2022 走看看