zoukankan      html  css  js  c++  java
  • loc、iloc、ix 区别

    loc——通过行标签索引行数据 
    iloc——通过行号索引行数据 
    ix——通过行标签或者行号索引行数据(基于loc和iloc 的混合) 
    同理,索引列数据也是如此!

    举例说明: 
    1、分别使用loc、iloc、ix 索引第一行的数据: 
    (1)loc

    import pandas as pd
    data=[[1,2,3],[4,5,6]]
    index=['a','b']#行号
    columns=['c','d','e']#列号
    df=pd.DataFrame(data,index=index,columns=columns)#生成一个数据框
    
    #print df.loc['a']
    '''
    c    1
    d    2
    e    3
    '''
    
    print df.loc[0]
    #这个就会出现错误
    '''
    TypeError: cannot do label indexing on <class 'pandas.indexes.base.Index'> 
    with these indexers [1] of <type 'int'>
    '''
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19

    (2)iloc

    import pandas as pd
    data=[[1,2,3],[4,5,6]]
    index=['a','b']#行号
    columns=['c','d','e']#列号
    df=pd.DataFrame(data,index=index,columns=columns)#生成一个数据框
    
    print df.iloc[0]
    '''
    c    1
    d    2
    e    3
    '''
    print df.iloc['a']
    '''
    TypeError: cannot do positional indexing on <class 'pandas.indexes.base.Index'> 
    with these indexers [a] of <type 'str'>
    '''
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17

    (3)ix

    import pandas as pd
    data=[[1,2,3],[4,5,6]]
    index=['a','b']#行号
    columns=['c','d','e']#列号
    df=pd.DataFrame(data,index=index,columns=columns)#生成一个数据框
    
    print df.ix[0]
    '''
    c    1
    d    2
    e    3
    '''
    print df.ix['a']
    '''
    c    1
    d    2
    e    3
    '''
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18

    2、分别使用loc、iloc、ix 索引第一列的数据:

    import pandas as pd
    data=[[1,2,3],[4,5,6]]
    index=['a','b']#行号
    columns=['c','d','e']#列号
    df=pd.DataFrame(data,index=index,columns=columns)#生成一个数据框
    
    print df.loc[:,['c']]
    
    print df.iloc[:,[0]]
    
    print df.ix[:,['c']]
    
    print df.ix[:,[0]]
    #结果都为
    '''
       c
    a  1
    b  4
    '''
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19

    3、分别使用loc、iloc、ix 索引多行的数据:

    import pandas as pd
    data=[[1,2,3],[4,5,6]]
    index=['a','b']#行号
    columns=['c','d','e']#列号
    df=pd.DataFrame(data,index=index,columns=columns)#生成一个数据框
    
    print df.loc['a':'b']
    
    print df.iloc[0:1]
    
    print df.ix['a':'b']
    
    print df.ix[0:1]
    #结果都为
    '''
       c  d  e
    a  1  2  3
    b  4  5  6
    '''
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19

    4、分别使用loc、iloc、ix 索引多列的数据:

    import pandas as pd
    data=[[1,2,3],[4,5,6]]
    index=['a','b']#行号
    columns=['c','d','e']#列号
    df=pd.DataFrame(data,index=index,columns=columns)#生成一个数据框
    
    print df.loc[:,'c':'d']
    
    print df.iloc[:,0:2]
    
    print df.ix[:,'c':'d']
    
    print df.ix[:,0:2]
    #结果都为
    '''
       c  d
    a  1  2
    b  4  5
    '''
    转自 https://blog.csdn.net/hecongqing/article/details/61927615
  • 相关阅读:
    【转】umount 的时候报错:device is busy
    【转】linux shell 的tr命令
    给bash的提示符设置不同的颜色
    备份系统时候出现错误
    [转]Xen 的漫漫人生路
    linux/screen的指令
    扩大centos镜像的硬盘空间
    ASP.NET Web API学习资源
    svn make a tag
    query多选下拉框插件 jquerymultiselect
  • 原文地址:https://www.cnblogs.com/NewsunLs/p/9201007.html
Copyright © 2011-2022 走看看