zoukankan      html  css  js  c++  java
  • Div--2, 992 C. Nastya and a Wardrobe(彻底理解矩阵快速幂)

    C. Nastya and a Wardrobe
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Nastya received a gift on New Year — a magic wardrobe. It is magic because in the end of each month the number of dresses in it doubles (i.e. the number of dresses becomes twice as large as it is in the beginning of the month).

    Unfortunately, right after the doubling the wardrobe eats one of the dresses (if any) with the 50% probability. It happens every month except the last one in the year.

    Nastya owns x dresses now, so she became interested in the expected number of dresses she will have in one year. Nastya lives in Byteland, so the year lasts for k + 1 months.

    Nastya is really busy, so she wants you to solve this problem. You are the programmer, after all. Also, you should find the answer modulo 109 + 7, because it is easy to see that it is always integer.

    Input

    The only line contains two integers x and k (0 ≤ x, k ≤ 1018), where x is the initial number of dresses and k + 1 is the number of months in a year in Byteland.

    Output

    In the only line print a single integer — the expected number of dresses Nastya will own one year later modulo 109 + 7.

    Examples
    input
    Copy
    2 0
    
    output
    Copy
    4
    
    input
    Copy
    2 1
    
    output
    Copy
    7
    
    input
    Copy
    3 2
    
    output
    Copy
    21
    
    Note

    In the first example a year consists on only one month, so the wardrobe does not eat dresses at all.

    In the second example after the first month there are 3 dresses with 50% probability and 4 dresses with 50% probability. Thus, in the end of the year there are 6 dresses with 50% probability and 8 dresses with 50% probability. This way the answer for this test is (6 + 8) / 2 = 7.

    思路:题意很简单,求均值,我们看一下样例三

    可以发现一个规律第一个数与最后一个数的和刚好为均值,最后一个数可以用快速幂

    求得,而第一个数可以用矩阵快速幂利用a[i] = 2*a[i-1] - 1;求得

    AC code:

    #include <bits/stdc++.h>
    
    using namespace std;
    
    #define mod 1000000007
    
    typedef long long ll;
    
    struct matrix1{
    	ll s[3][3];
    } q;
    
    struct matrix2 {
    	ll s[3];
    } ans;
    
    ll ksm(ll a,ll b,ll c)
    {
    	c %= mod;
    	while(b)
    	{
    		if(b&1) c = c*a%mod;
    		b >>= 1;
    		a = a*a%mod;
    	}
    	return c;
    }
    
    matrix2 mulmatrix(matrix2 a,matrix1 b)
    {
    	matrix2 res;
    	memset(res.s,0,sizeof(res.s));
    	for (int i = 0;i<3;i++){
    		ll x = 0;
    		for(int j = 0;j<3;j++){
    			x = (x + b.s[i][j]%mod * a.s[j]%mod) % mod;
    		}
    		res.s[i] = x % mod;
    	}
    	return res;
    }
    
    matrix1 mulmatrix2(matrix1 a,matrix1 b)
    {
    	matrix1 res;
    	memset(res.s,0,sizeof(res.s));
    	for (int i = 0;i<3;i++){
    		for (int j = 0;j<3;j++){
    			ll x = 0;
    			for(int k = 0;k<3;k++){
    				x = (x + a.s[i][k]%mod * b.s[k][j]%mod)%mod;
    			}
    			res.s[i][j] = x % mod;
    		}
    	}
    	return res;
    }
    
    matrix2 ksmmatrix(matrix1 a,matrix2 b,ll c)
    {
    	while(c)
    	{
    		if(c&1) b = mulmatrix(b,a);
    		c >>= 1;
    		a = mulmatrix2(a,a);
    	}
    	return b;
    }
    
    int main()
    {
    	ios_base::sync_with_stdio(false); cin.tie(0) ; cout.tie(0);
    	ll x,y;
    	cin>>x>>y;
    	if(x == 0) {
    		cout<< 0 <<endl;
    		return 0;
    	}
    	if(y == 0){
    		cout<< x*2%mod <<endl;
    		return 0;
    	}
    	ll res1 = ksm(2,y,x);
    	x %= mod;
    	ans.s[0] = x;
    	ans.s[2] = -1;
    	q.s[0][0] = 2; q.s[0][2] = 1; q.s[2][2] = 1;
    	ans = ksmmatrix(q,ans,y);
    	cout<< ((res1%mod + ans.s[0]%mod)%mod + mod)%mod <<endl;
    	return 0;
    }
    
  • 相关阅读:
    [BZOJ3997][TJOI2015]组合数学(Dilworth定理+DP)
    [BZOJ4000][TJOI2015]棋盘(状压DP+矩阵快速幂)
    BZOJ2462[Beijing2011]矩阵模板(二维Hash)
    [BZOJ2458][BeiJing2011]最小三角形(分治)
    [HDU5354]Bipartite Graph(CDQ分治+并查集)
    [NOIP2017]时间复杂度(模拟)
    [Luogu2540][NOIP2016]斗地主增强版(搜索+DP)
    [Luogu1979][NOIP2013]华容道(BFS+SPFA)
    WQS二分题集
    [CC-XXOR]Chef and Easy Problem
  • 原文地址:https://www.cnblogs.com/Nlifea/p/11745987.html
Copyright © 2011-2022 走看看