zoukankan      html  css  js  c++  java
  • YOLO算法的ZYNQ移植尝试(SDx方法、ARM部分)

    尝试直接从官网移植
    1.
    需要将include/darknet.h文件copy到src
     
    2.
    发现老是报错,说代码有问题network net = parse_network_cfg(cfgfile);报错
    (network和network*的问题),查看源代码,代码应该无问题。。。。
    在windows下使用vs编译源代码,看是否能行:发现vs2015安装有问题,一打开软件就软件卡住了,并且可能会导致vs2013使用也出现问题,bug!!
    装了几个版本的vs2015都不行,我已经放弃了!!!
     
    3.
    选用该处的代码,对不必要的代码做删减,尝试使用SDx编译,发现不行,如下的语法解释不了:
    #define YOLODLL_API __declspec(dllexport)
     
    ...
     
           YOLODLL_API Detector(std::string cfg_filename, std::string weight_filename, int gpu_id = 0);
           YOLODLL_API ~Detector();
    4.
    还是选用原始代码,将network net都修改为network *net,然后将net.修改为net->,此类修改(发现源代码中其实也是有部分改了,如yolo.c,有部分没有改)
    再将example中的代码和src内的代码都加入源中进行编译
    yolo_v2_class.cpp和yolo_v2_class.h,yolo_console_dll.cpp删掉
     
    编译通过,但是运行错误
    root@xilinx-zc706-2017_2:/mnt# ./YOLOv2.elf yolo test cfg/tiny-yolo.cfg tiny-yolo.weights data/dog.jpg
    layer     filters    size              input                output
        0 conv     16  3 x 3 / 1   416 x 416 x   3   ->   416 x 416 x  16
        1 max          2 x 2 / 2   416 x 416 x  16   ->   208 x 208 x  16
        2 conv     32  3 x 3 / 1   208 x 208 x  16   ->   208 x 208 x  32
        3 max          2 x 2 / 2   208 x 208 x  32   ->   104 x 104 x  32
        4 conv     64  3 x 3 / 1   104 x 104 x  32   ->   104 x 104 x  64
        5 max          2 x 2 / 2   104 x 104 x  64   ->    52 x  52 x  64
        6 conv    128  3 x 3 / 1    52 x  52 x  64   ->    52 x  52 x 128
        7 max          2 x 2 / 2    52 x  52 x 128   ->    26 x  26 x 128
        8 conv    256  3 x 3 / 1    26 x  26 x 128   ->    26 x  26 x 256
        9 max          2 x 2 / 2    26 x  26 x 256   ->    13 x  13 x 256
       10 conv    512  3 x 3 / 1    13 x  13 x 256   ->    13 x  13 x 512
       11 max          2 x 2 / 1    13 x  13 x 512   ->    13 x  13 x 512
       12 conv   1024  3 x 3 / 1    13 x  13 x 512   ->    13 x  13 x1024
       13 conv    512  3 x 3 / 1    13 x  13 x1024   ->    13 x  13 x 512
       14 conv    425  1 x 1 / 1    13 x  13 x 512   ->    13 x  13 x 425
       15 detection
    mask_scale: Using default '1.000000'
    Loading weights from tiny-yolo.weights...Done!
    data/dog.jpg: Predicted in 36.919891 seconds.
    Not compiled with OpenCV, saving to predictions.png instead
    root@xilinx-zc706-2017_2:/mnt#
    5.
    研究发现正确的指令应该是:
    ./darknet detector test cfg/voc.data cfg/tiny-yolo-voc.cfg tiny-yolo-voc.weights data/dog.jpg

    或者(二者等效)

    ./darknet detect cfg/voc.data cfg/tiny-yolo-voc.cfg tiny-yolo-voc.weights data/dog.jpg

    才可,与某一开源代码中的运行方法不一致。

    换成tiny-yolo.cfg不行,理论上应该将voc.data换为coco.data,但实际换了之后仍然没有检测结果。
    以上均应该是cfg文件、weight文件、data文件不匹配造成的。
     
     
     
    6.
    最后按照这里的源代码移植编译一次,将data.c中的rand_s(&Num)函数修改为Num=rand()编译通过后(rand_s是vs的函数,fpga上编译不通过),终于成功了结果如下:
    root@xilinx-zc706-2017_2:/mnt# ./detect.elf detector test cfg/voc.data cfg/tiny-yolo-voc.cfg tiny-yolo-voc.weights data/dog.jpg
    layer     filters    size              input                output
        0 conv     16  3 x 3 / 1   416 x 416 x   3   ->   416 x 416 x  16
        1 max          2 x 2 / 2   416 x 416 x  16   ->   208 x 208 x  16
        2 conv     32  3 x 3 / 1   208 x 208 x  16   ->   208 x 208 x  32
        3 max          2 x 2 / 2   208 x 208 x  32   ->   104 x 104 x  32
        4 conv     64  3 x 3 / 1   104 x 104 x  32   ->   104 x 104 x  64
        5 max          2 x 2 / 2   104 x 104 x  64   ->    52 x  52 x  64
        6 conv    128  3 x 3 / 1    52 x  52 x  64   ->    52 x  52 x 128
        7 max          2 x 2 / 2    52 x  52 x 128   ->    26 x  26 x 128
        8 conv    256  3 x 3 / 1    26 x  26 x 128   ->    26 x  26 x 256
        9 max          2 x 2 / 2    26 x  26 x 256   ->    13 x  13 x 256
       10 conv    512  3 x 3 / 1    13 x  13 x 256   ->    13 x  13 x 512
       11 max          2 x 2 / 1    13 x  13 x 512   ->    13 x  13 x 512
       12 conv   1024  3 x 3 / 1    13 x  13 x 512   ->    13 x  13 x1024
       13 conv   1024  3 x 3 / 1    13 x  13 x1024   ->    13 x  13 x1024
       14 conv    125  1 x 1 / 1    13 x  13 x1024   ->    13 x  13 x 125
       15 detection
    Loading weights from tiny-yolo-voc.weights...Done!
    data/dog.jpg: Predicted in 47.318359 seconds.
    car: 76%
    bicycle: 24%
    dog: 79%
    Not compiled with OpenCV, saving to predictions.png instead
    root@xilinx-zc706-2017_2:/mnt#
     
     
    data/person.jpg: Predicted in 47.314194 seconds.
    person: 69%
    sheep: 82%
    cow: 52%
    Not compiled with OpenCV, saving to predictions.png instead
     
     
    小结:
    使用
    root@xilinx-zc706-2017_2:/mnt# ./detect.elf detector test cfg/coco.data cfg/tiny-yolo.cfg tiny-yolo.weights data/dog.jpg
    root@xilinx-zc706-2017_2:/mnt# ./detect.elf detect cfg/tiny-yolo.cfg tiny-yolo.weights data/dog.jpg
    root@xilinx-zc706-2017_2:/mnt# ./detect.elf yolo est cfg/tiny-yolo.cfg tiny-yolo.weights data/dog.jpg

    均能读出cfg文件,加载weights,运行37s,但是检测结果不显示,要么是指令有误,要么是配置文件有误。

     
    使用
    root@xilinx-zc706-2017_2:/mnt# ./detect.elf yolo test cfg/tiny-yolo-voc.cfg tiny-yolo-voc.weights data/person.jpg

    能读出cfg文件,加载weights,运行47s,但是检测结果不显示。可能原因是没有指明voc.data,导致的问题

     
    使用
    root@xilinx-zc706-2017_2:/mnt# ./detect.elf detect cfg/tiny-yolo-voc.cfg tiny-yolo-voc.weights data/person.jpg

    能读出cfg文件,加载weights,运行47s,但是检测结果不正确。可能原因是没有指明voc.data,导致的list name错乱,如下:

    root@xilinx-zc706-2017_2:/mnt# ./detect.elf detect cfg/tiny-yolo-voc.cfg tiny-yolo-voc.weights data/person.jpg
    layer     filters    size              input                output
        0 conv     16  3 x 3 / 1   416 x 416 x   3   ->   416 x 416 x  16
        1 max          2 x 2 / 2   416 x 416 x  16   ->   208 x 208 x  16
        2 conv     32  3 x 3 / 1   208 x 208 x  16   ->   208 x 208 x  32
        3 max          2 x 2 / 2   208 x 208 x  32   ->   104 x 104 x  32
        4 conv     64  3 x 3 / 1   104 x 104 x  32   ->   104 x 104 x  64
        5 max          2 x 2 / 2   104 x 104 x  64   ->    52 x  52 x  64
        6 conv    128  3 x 3 / 1    52 x  52 x  64   ->    52 x  52 x 128
        7 max          2 x 2 / 2    52 x  52 x 128   ->    26 x  26 x 128
        8 conv    256  3 x 3 / 1    26 x  26 x 128   ->    26 x  26 x 256
        9 max          2 x 2 / 2    26 x  26 x 256   ->    13 x  13 x 256
       10 conv    512  3 x 3 / 1    13 x  13 x 256   ->    13 x  13 x 512
       11 max          2 x 2 / 1    13 x  13 x 512   ->    13 x  13 x 512
       12 conv   1024  3 x 3 / 1    13 x  13 x 512   ->    13 x  13 x1024
       13 conv   1024  3 x 3 / 1    13 x  13 x1024   ->    13 x  13 x1024
       14 conv    125  1 x 1 / 1    13 x  13 x1024   ->    13 x  13 x 125
       15 detection
    Loading weights from tiny-yolo-voc.weights...Done!
    data/person.jpg: Predicted in 47.305035 seconds.
    bird: 69%
    dog: 82%
    traffic light: 52%
    Not compiled with OpenCV, saving to predictions.png instead
     
    使用完整、正确的方式,检测的结果为:
    root@xilinx-zc706-2017_2:/mnt# ./detect.elf detector test cfg/voc.data cfg/tiny-yolo-voc.cfg tiny-yolo-voc.weights data/person.jpg
    layer     filters    size              input                output
        0 conv     16  3 x 3 / 1   416 x 416 x   3   ->   416 x 416 x  16
        1 max          2 x 2 / 2   416 x 416 x  16   ->   208 x 208 x  16
        2 conv     32  3 x 3 / 1   208 x 208 x  16   ->   208 x 208 x  32
        3 max          2 x 2 / 2   208 x 208 x  32   ->   104 x 104 x  32
        4 conv     64  3 x 3 / 1   104 x 104 x  32   ->   104 x 104 x  64
        5 max          2 x 2 / 2   104 x 104 x  64   ->    52 x  52 x  64
        6 conv    128  3 x 3 / 1    52 x  52 x  64   ->    52 x  52 x 128
        7 max          2 x 2 / 2    52 x  52 x 128   ->    26 x  26 x 128
        8 conv    256  3 x 3 / 1    26 x  26 x 128   ->    26 x  26 x 256
        9 max          2 x 2 / 2    26 x  26 x 256   ->    13 x  13 x 256
       10 conv    512  3 x 3 / 1    13 x  13 x 256   ->    13 x  13 x 512
       11 max          2 x 2 / 1    13 x  13 x 512   ->    13 x  13 x 512
       12 conv   1024  3 x 3 / 1    13 x  13 x 512   ->    13 x  13 x1024
       13 conv   1024  3 x 3 / 1    13 x  13 x1024   ->    13 x  13 x1024
       14 conv    125  1 x 1 / 1    13 x  13 x1024   ->    13 x  13 x 125
       15 detection
    Loading weights from tiny-yolo-voc.weights...Done!
    data/person.jpg: Predicted in 47.306183 seconds.
    person: 69%
    sheep: 82%
    cow: 52%
    Not compiled with OpenCV, saving to predictions.png instead
     
     
    也可以用来做分类:
    root@xilinx-zc706-2017_2:/mnt# ./detect.elf classifier predict cfg/imagenet1k.data cfg/darknet.cfg darknet.weights data/dog.jpg
    layer     filters    size              input                output
        0 conv     16  3 x 3 / 1   224 x 224 x   3   ->   224 x 224 x  16
        1 max          2 x 2 / 2   224 x 224 x  16   ->   112 x 112 x  16
        2 conv     32  3 x 3 / 1   112 x 112 x  16   ->   112 x 112 x  32
        3 max          2 x 2 / 2   112 x 112 x  32   ->    56 x  56 x  32
        4 conv     64  3 x 3 / 1    56 x  56 x  32   ->    56 x  56 x  64
        5 max          2 x 2 / 2    56 x  56 x  64   ->    28 x  28 x  64
        6 conv    128  3 x 3 / 1    28 x  28 x  64   ->    28 x  28 x 128
        7 max          2 x 2 / 2    28 x  28 x 128   ->    14 x  14 x 128
        8 conv    256  3 x 3 / 1    14 x  14 x 128   ->    14 x  14 x 256
        9 max          2 x 2 / 2    14 x  14 x 256   ->     7 x   7 x 256
       10 conv    512  3 x 3 / 1     7 x   7 x 256   ->     7 x   7 x 512
       11 max          2 x 2 / 2     7 x   7 x 512   ->     4 x   4 x 512
       12 conv   1024  3 x 3 / 1     4 x   4 x 512   ->     4 x   4 x1024
       13 conv   1000  1 x 1 / 1     4 x   4 x1024   ->     4 x   4 x1000
       14 avg                        4 x   4 x1000   ->  1000
       15 softmax                                        1000
       16 cost                                           1000
    Loading weights from darknet.weights...Done!
    298 224
    data/dog.jpg: Predicted in 7.463062 seconds.
    malamute: 0.222252
    Norwegian elkhound: 0.101390
    German shepherd: 0.089522
    keeshond: 0.068499
    Eskimo dog: 0.067451
     
  • 相关阅读:
    Android 简单案例:可移动的View
    Android 简单案例:onSaveInstanceState 和 onRestoreInstanceState
    Android 简单案例:继承BaseAdapter实现Adapter
    Android ImageResizer:inSampleSize
    Android 动画fillAfter和fillBefore
    Android Runtime.getRuntime().exec
    Android Fingerprint系列之google原生界面
    GIF录制工具
    Android Graphviz 安装
    Google Java编程风格指南
  • 原文地址:https://www.cnblogs.com/Osler/p/8780614.html
Copyright © 2011-2022 走看看